mirror of
https://github.com/youngyangyang04/leetcode-master.git
synced 2025-07-08 08:50:15 +08:00
34. 在排序数组中查找元素的第一个和最后一个位置,添加Java版本&解法2
This commit is contained in:
@ -14,7 +14,7 @@
|
||||
如果数组中不存在目标值 target,返回 [-1, -1]。
|
||||
|
||||
进阶:你可以设计并实现时间复杂度为 O(log n) 的算法解决此问题吗?
|
||||
|
||||
|
||||
|
||||
示例 1:
|
||||
* 输入:nums = [5,7,7,8,8,10], target = 8
|
||||
@ -173,8 +173,105 @@ private:
|
||||
## Java
|
||||
|
||||
```java
|
||||
class Solution {
|
||||
int[] searchRange(int[] nums, int target) {
|
||||
int leftBorder = getLeftBorder(nums, target);
|
||||
int rightBorder = getRightBorder(nums, target);
|
||||
// 情况一
|
||||
if (leftBorder == -2 || rightBorder == -2) return new int[]{-1, -1};
|
||||
// 情况三
|
||||
if (rightBorder - leftBorder > 1) return new int[]{leftBorder + 1, rightBorder - 1};
|
||||
// 情况二
|
||||
return new int[]{-1, -1};
|
||||
}
|
||||
|
||||
int getRightBorder(int[] nums, int target) {
|
||||
int left = 0;
|
||||
int right = nums.length - 1;
|
||||
int rightBorder = -2; // 记录一下rightBorder没有被赋值的情况
|
||||
while (left <= right) {
|
||||
int middle = left + ((right - left) / 2);
|
||||
if (nums[middle] > target) {
|
||||
right = middle - 1;
|
||||
} else { // 寻找右边界,nums[middle] == target的时候更新left
|
||||
left = middle + 1;
|
||||
rightBorder = left;
|
||||
}
|
||||
}
|
||||
return rightBorder;
|
||||
}
|
||||
|
||||
int getLeftBorder(int[] nums, int target) {
|
||||
int left = 0;
|
||||
int right = nums.length - 1;
|
||||
int leftBorder = -2; // 记录一下leftBorder没有被赋值的情况
|
||||
while (left <= right) {
|
||||
int middle = left + ((right - left) / 2);
|
||||
if (nums[middle] >= target) { // 寻找左边界,nums[middle] == target的时候更新right
|
||||
right = middle - 1;
|
||||
leftBorder = right;
|
||||
} else {
|
||||
left = middle + 1;
|
||||
}
|
||||
}
|
||||
return leftBorder;
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
```java
|
||||
// 解法2
|
||||
// 1、首先,在 nums 数组中二分查找 target;
|
||||
// 2、如果二分查找失败,则 binarySearch 返回 -1,表明 nums 中没有 target。此时,searchRange 直接返回 {-1, -1};
|
||||
// 3、如果二分查找失败,则 binarySearch 返回 nums 中 为 target 的一个下标。然后,通过左右滑动指针,来找到符合题意的区间
|
||||
|
||||
class Solution {
|
||||
public int[] searchRange(int[] nums, int target) {
|
||||
int index = binarySearch(nums, target); // 二分查找
|
||||
|
||||
if (index == -1) { // nums 中不存在 target,直接返回 {-1, -1}
|
||||
return new int[] {-1, -1}; // 匿名数组
|
||||
}
|
||||
// nums 中存在 targe,则左右滑动指针,来找到符合题意的区间
|
||||
int left = index;
|
||||
int right = index;
|
||||
// 向左滑动,找左边界
|
||||
while (left - 1 >= 0 && nums[left - 1] == nums[index]) { // 防止数组越界。逻辑短路,两个条件顺序不能换
|
||||
left--;
|
||||
}
|
||||
// 向左滑动,找右边界
|
||||
while (right + 1 < nums.length && nums[right + 1] == nums[index]) { // 防止数组越界。
|
||||
right++;
|
||||
}
|
||||
return new int[] {left, right};
|
||||
}
|
||||
|
||||
/**
|
||||
* 二分查找
|
||||
* @param nums
|
||||
* @param target
|
||||
*/
|
||||
public int binarySearch(int[] nums, int target) {
|
||||
int left = 0;
|
||||
int right = nums.length - 1; // 不变量:左闭右闭区间
|
||||
|
||||
while (left <= right) { // 不变量:左闭右闭区间
|
||||
int mid = left + (right - left) / 2;
|
||||
if (nums[mid] == target) {
|
||||
return mid;
|
||||
} else if (nums[mid] < target) {
|
||||
left = mid + 1;
|
||||
} else {
|
||||
right = mid - 1; // 不变量:左闭右闭区间
|
||||
}
|
||||
}
|
||||
return -1; // 不存在
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
|
||||
## Python
|
||||
|
||||
```python
|
||||
@ -196,4 +293,3 @@ private:
|
||||
* 知识星球:[代码随想录](https://mp.weixin.qq.com/s/QVF6upVMSbgvZy8lHZS3CQ)
|
||||
<div align="center"><img src=../pics/公众号.png width=450 alt=> </img></div>
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user