Better interpolation, bezier subpaths, and color bugfix

This commit is contained in:
Grant Sanderson
2016-04-13 20:30:26 -07:00
parent c685211484
commit a9f620e250
7 changed files with 156 additions and 74 deletions

View File

@ -18,20 +18,30 @@ class VectorizedMobject(Mobject):
## Colors
def init_colors(self):
self.set_stroke_color(self.color)
self.set_fill_color(self.fill_color)
self.set_stroke(color = self.color)
self.set_fill(color = self.fill_color)
return self
def set_fill_color(self, color):
self.fill_rgb = color_to_rgb(color)
def set_family_attr(self, attr, value):
for mob in self.submobject_family():
setattr(mob, attr, value)
def set_fill(self, color = None, opacity = 1.0):
if color is not None:
self.set_family_attr("fill_rgb", color_to_rgb(color))
self.set_family_attr("fill_opacity", opacity)
return self
def set_stroke_color(self, color):
self.stroke_rgb = color_to_rgb(color)
def set_stroke(self, color = None, width = None):
if color is not None:
self.set_family_attr("stroke_rgb", color_to_rgb(color))
if width is not None:
self.set_family_attr("stroke_width", width)
return self
def highlight(self, color):
self.set_fill_color(color)
self.set_stroke_color(color)
self.set_fill(color = color)
self.set_stroke(color = color)
return self
def get_fill_color(self):
@ -47,19 +57,17 @@ class VectorizedMobject(Mobject):
#is the predominant color attribute?
## Drawing
def init_points(self):
##Default to starting at origin
self.points = np.zeros((1, self.dim))
return self
def start_at(self, point):
if len(self.points) == 0:
self.points = np.zeros((1, 3))
self.points[0] = point
return self
def add_point(self, handle1, handle2, point):
def add_control_points(self, control_points):
assert(len(control_points) % 3 == 0)
self.points = np.append(
self.points,
[handle1, handle2, point],
control_points,
axis = 0
)
return self
@ -143,17 +151,17 @@ class VectorizedMobject(Mobject):
## Information about line
def component_curves(self):
for n in range(self.get_num_points()-1):
for n in range(self.get_num_anchor_points()-1):
yield self.get_nth_curve(n)
def get_nth_curve(self, n):
return bezier(self.points[3*n:3*n+4])
def get_num_points(self):
def get_num_anchor_points(self):
return (len(self.points) - 1)/3 + 1
def point_from_proportion(self, alpha):
num_cubics = self.get_num_points()-1
num_cubics = self.get_num_anchor_points()-1
interpoint_alpha = num_cubics*(alpha % (1./num_cubics))
index = 3*int(alpha*num_cubics)
cubic = bezier(self.points[index:index+4])
@ -170,27 +178,31 @@ class VectorizedMobject(Mobject):
def align_points_with_larger(self, larger_mobject):
assert(isinstance(larger_mobject, VectorizedMobject))
points = np.array([self.points[0]])
target_len = larger_mobject.get_num_points()-1
num_curves = self.get_num_points()-1
#curves are buckets, and we need to know how many new
#anchor points to put into each one
target_len = larger_mobject.get_num_anchor_points()-1
num_curves = self.get_num_anchor_points()-1
#Curves in self are buckets, and we need to know
#how many new anchor points to put into each one.
#Each element of index_allocation is like a bucket,
#and its value tells you the appropriate index of
#the smaller curve.
index_allocation = (np.arange(target_len) * num_curves)/target_len
for index, curve in enumerate(self.component_curves()):
num_inter_points = sum(index_allocation == index)
step = 1./num_inter_points
for index in range(num_curves):
curr_bezier_points = self.points[3*index:3*index+4]
num_inter_curves = sum(index_allocation == index)
step = 1./num_inter_curves
alphas = np.arange(0, 1+step, step)
new_anchors = np.array(map(curve, alphas))
h1, h2 = get_smooth_handle_points(new_anchors)
new_points = np.array(
zip(h1, h2, new_anchors[1:])
)
new_points = new_points.reshape((new_points.size/3, 3))
points = np.append(points, new_points, 0)
self.set_points(points, "handles_included")
for a, b in zip(alphas, alphas[1:]):
new_points = partial_bezier_points(curr_bezier_points, a, b)
points = np.append(
points, new_points[1:], axis = 0
)
self.set_points(points)
return self
def get_point_mobject(self):
return VectorizedPoint(self.get_center())
def get_point_mobject(self, center):
if center is None:
center = self.get_center()
return VectorizedPoint(center)
def interpolate_color(self, mobject1, mobject2, alpha):
attrs = [
@ -205,8 +217,6 @@ class VectorizedMobject(Mobject):
getattr(mobject2, attr),
alpha
))
self.closed = mobject1.is_closed() and mobject2.is_closed()
def become_partial(self, mobject, a, b):
assert(isinstance(mobject, VectorizedMobject))
@ -214,32 +224,25 @@ class VectorizedMobject(Mobject):
#-A middle section, which matches the curve exactly
#-A start, which is some ending portion of an inner cubic
#-An end, which is the starting portion of a later inner cubic
self.open()
if a <= 0 and b >= 1:
if mobject.is_closed():
self.close()
self.set_points(mobject.points, "handles_included")
self.set_points(mobject.points)
return self
num_cubics = mobject.get_num_points()-1
num_cubics = mobject.get_num_anchor_points()-1
lower_index = int(a*num_cubics)
upper_index = int(b*num_cubics)
points = np.array(
mobject.points[3*lower_index:3*upper_index+4]
)
if len(points) > 1:
#This is a kind of neat-but-dense algorithm
#for how to interpolate the handle points
a_residue = (num_cubics*a)%1
points[:4] = [
bezier(points[i:4])(a_residue)
for i in range(4)
]
b_residue = (num_cubics*b)%1
points[-4:] = [
bezier(points[-4:len(points)-3+i])(b_residue)
for i in range(4)
]
self.set_points(points, "handles_included")
points[:4] = partial_bezier_points(
points[:4], a_residue, 1
)
points[-4:] = partial_bezier_points(
points[-4:], 0, b_residue
)
self.set_points(points)
return self
@ -256,8 +259,8 @@ class VectorizedMobjectFromSVGPathstring(VectorizedMobject):
digest_locals(self)
VectorizedMobject.__init__(self, **kwargs)
def generate_points(self):
path_commands = [
def get_path_commands(self):
return [
"M", #moveto
"L", #lineto
"H", #horizontal lineto
@ -269,15 +272,67 @@ class VectorizedMobjectFromSVGPathstring(VectorizedMobject):
"A", #elliptical Arc
"Z", #closepath
]
pattern = "[%s]"%("".join(path_commands))
def generate_points(self):
pattern = "[%s]"%("".join(self.get_path_commands()))
pairs = zip(
re.findall(pattern, self.pathstring),
re.split(pattern, self.path_string)
re.findall(pattern, self.path_string),
re.split(pattern, self.path_string)[1:]
)
#Which mobject should new points be added to
self.growing_path = self
for command, coord_string in pairs:
pass
#TODO
self.handle_command(command, coord_string)
#people treat y-coordinate differently
self.rotate(np.pi, RIGHT)
def handle_command(self, command, coord_string):
#new_points are the points that will be added to the curr_points
#list. This variable may get modified in the conditionals below.
points = self.growing_path.points
new_points = self.string_to_points(coord_string)
if command == "M": #moveto
if len(points) > 0:
self.add_subpath(new_points)
self.growing_path = self.subpath_mobjects[-1]
else:
self.growing_path.start_at(new_points[0])
return
elif command in ["L", "H", "V"]: #lineto
if command == "H":
new_points[0,1] = points[-1,1]
elif command == "V":
new_points[0,1] = new_points[0,0]
new_points[0,0] = points[-1,0]
new_points = new_points[[0, 0, 0]]
elif command == "C": #curveto
pass #Yay! No action required
elif command in ["S", "T"]: #smooth curveto
handle1 = points[-1]+(points[-1]-points[-2])
new_points = np.append([handle1], new_points, axis = 0)
if command in ["Q", "T"]: #quadratic Bezier curve
#TODO, this is a suboptimal approximation
new_points = np.append([new_points[0]], new_points, axis = 0)
elif command == "A": #elliptical Arc
raise Exception("Not implemented")
elif command == "Z": #closepath
if not is_closed(points):
#Both handles and new anchor are the start
new_points = points[[0, 0, 0]]
self.growing_path.add_control_points(new_points)
def string_to_points(self, coord_string):
numbers = [
float(s)
for s in coord_string.split(" ")
if s is not ""
]
if len(numbers)%2 == 1:
numbers.append(0)
num_points = len(numbers)/2
result = np.zeros((num_points, self.dim))
result[:,:2] = np.array(numbers).reshape((num_points, 2))
return result