Files
manim/mobject/vectorized_mobject.py
2016-04-13 20:30:26 -07:00

342 lines
11 KiB
Python

import re
from .mobject import Mobject
from helpers import *
class VectorizedMobject(Mobject):
CONFIG = {
"fill_color" : BLACK,
"fill_opacity" : 0.0,
#Indicates that it will not be displayed, but
#that it should count in parent mobject's path
"is_subpath" : False,
}
def __init__(self, *args, **kwargs):
self.subpath_mobjects = []
Mobject.__init__(self, *args, **kwargs)
## Colors
def init_colors(self):
self.set_stroke(color = self.color)
self.set_fill(color = self.fill_color)
return self
def set_family_attr(self, attr, value):
for mob in self.submobject_family():
setattr(mob, attr, value)
def set_fill(self, color = None, opacity = 1.0):
if color is not None:
self.set_family_attr("fill_rgb", color_to_rgb(color))
self.set_family_attr("fill_opacity", opacity)
return self
def set_stroke(self, color = None, width = None):
if color is not None:
self.set_family_attr("stroke_rgb", color_to_rgb(color))
if width is not None:
self.set_family_attr("stroke_width", width)
return self
def highlight(self, color):
self.set_fill(color = color)
self.set_stroke(color = color)
return self
def get_fill_color(self):
return Color(rgb = self.fill_rgb)
def get_fill_opacity(self):
return self.fill_opacity
def get_stroke_color(self):
return Color(rgb = self.stroke_rgb)
#TODO, get color? Specify if stroke or fill
#is the predominant color attribute?
## Drawing
def start_at(self, point):
if len(self.points) == 0:
self.points = np.zeros((1, 3))
self.points[0] = point
return self
def add_control_points(self, control_points):
assert(len(control_points) % 3 == 0)
self.points = np.append(
self.points,
control_points,
axis = 0
)
return self
def is_closed(self):
return is_closed(self.points)
def set_anchors_and_handles(self, anchors, handles1, handles2):
assert(len(anchors) == len(handles1)+1)
assert(len(anchors) == len(handles2)+1)
total_len = 3*(len(anchors)-1) + 1
self.points = np.zeros((total_len, self.dim))
self.points[0] = anchors[0]
arrays = [handles1, handles2, anchors[1:]]
for index, array in enumerate(arrays):
self.points[index+1::3] = array
return self.points
def set_points_as_corners(self, points):
if len(points) <= 1:
return self
handles1 = points[:-1]
handles2 = points[1:]
self.set_anchors_and_handles(points, handles1, handles2)
return self
def set_points_smoothly(self, points):
if len(points) <= 1:
return self
h1, h2 = get_smooth_handle_points(points)
self.set_anchors_and_handles(points, h1, h2)
return self
def set_points(self, points):
self.points = points
return self
def set_anchor_points(self, points, mode = "smooth"):
if not isinstance(points, np.ndarray):
points = np.array(points)
if self.closed and not is_closed(points):
points = np.append(points, [points[0]], axis = 0)
if mode == "smooth":
self.set_points_smoothly(points)
elif mode == "corners":
self.set_points_as_corners(points)
else:
raise Exception("Unknown mode")
return self
def change_mode(self, mode):
anchors, h1, h2 = self.get_anchors_and_handles()
self.set_points(anchors, mode = mode)
return self
def make_smooth(self):
return self.change_mode("smooth")
def make_jagged(self):
return self.change_mode("corners")
def add_subpath(self, points):
"""
A VectorizedMobject is meant to represnt
a single "path", in the svg sense of the word.
However, one such path may really consit of separate
continuous components if there is a move_to command.
These other portions of the path will be treated as submobjects,
but will be tracked in a separate special list for when
it comes time to display.
"""
subpath_mobject = VectorizedMobject(
is_subpath = True
)
subpath_mobject.set_points(points)
self.subpath_mobjects.append(subpath_mobject)
self.add(subpath_mobject)
return self
## Information about line
def component_curves(self):
for n in range(self.get_num_anchor_points()-1):
yield self.get_nth_curve(n)
def get_nth_curve(self, n):
return bezier(self.points[3*n:3*n+4])
def get_num_anchor_points(self):
return (len(self.points) - 1)/3 + 1
def point_from_proportion(self, alpha):
num_cubics = self.get_num_anchor_points()-1
interpoint_alpha = num_cubics*(alpha % (1./num_cubics))
index = 3*int(alpha*num_cubics)
cubic = bezier(self.points[index:index+4])
return cubic(interpoint_alpha)
def get_anchors_and_handles(self):
return [
self.points[i::3]
for i in range(3)
]
## Alignment
def align_points_with_larger(self, larger_mobject):
assert(isinstance(larger_mobject, VectorizedMobject))
points = np.array([self.points[0]])
target_len = larger_mobject.get_num_anchor_points()-1
num_curves = self.get_num_anchor_points()-1
#Curves in self are buckets, and we need to know
#how many new anchor points to put into each one.
#Each element of index_allocation is like a bucket,
#and its value tells you the appropriate index of
#the smaller curve.
index_allocation = (np.arange(target_len) * num_curves)/target_len
for index in range(num_curves):
curr_bezier_points = self.points[3*index:3*index+4]
num_inter_curves = sum(index_allocation == index)
step = 1./num_inter_curves
alphas = np.arange(0, 1+step, step)
for a, b in zip(alphas, alphas[1:]):
new_points = partial_bezier_points(curr_bezier_points, a, b)
points = np.append(
points, new_points[1:], axis = 0
)
self.set_points(points)
return self
def get_point_mobject(self, center):
if center is None:
center = self.get_center()
return VectorizedPoint(center)
def interpolate_color(self, mobject1, mobject2, alpha):
attrs = [
"stroke_rgb",
"stroke_width",
"fill_rgb",
"fill_opacity",
]
for attr in attrs:
setattr(self, attr, interpolate(
getattr(mobject1, attr),
getattr(mobject2, attr),
alpha
))
def become_partial(self, mobject, a, b):
assert(isinstance(mobject, VectorizedMobject))
#Partial curve includes three portions:
#-A middle section, which matches the curve exactly
#-A start, which is some ending portion of an inner cubic
#-An end, which is the starting portion of a later inner cubic
if a <= 0 and b >= 1:
self.set_points(mobject.points)
return self
num_cubics = mobject.get_num_anchor_points()-1
lower_index = int(a*num_cubics)
upper_index = int(b*num_cubics)
points = np.array(
mobject.points[3*lower_index:3*upper_index+4]
)
if len(points) > 1:
a_residue = (num_cubics*a)%1
b_residue = (num_cubics*b)%1
points[:4] = partial_bezier_points(
points[:4], a_residue, 1
)
points[-4:] = partial_bezier_points(
points[-4:], 0, b_residue
)
self.set_points(points)
return self
class VectorizedPoint(VectorizedMobject):
CONFIG = {
"color" : BLACK,
}
def __init__(self, location = ORIGIN, **kwargs):
VectorizedMobject.__init__(self, **kwargs)
self.set_points([location])
class VectorizedMobjectFromSVGPathstring(VectorizedMobject):
def __init__(self, path_string, **kwargs):
digest_locals(self)
VectorizedMobject.__init__(self, **kwargs)
def get_path_commands(self):
return [
"M", #moveto
"L", #lineto
"H", #horizontal lineto
"V", #vertical lineto
"C", #curveto
"S", #smooth curveto
"Q", #quadratic Bezier curve
"T", #smooth quadratic Bezier curveto
"A", #elliptical Arc
"Z", #closepath
]
def generate_points(self):
pattern = "[%s]"%("".join(self.get_path_commands()))
pairs = zip(
re.findall(pattern, self.path_string),
re.split(pattern, self.path_string)[1:]
)
#Which mobject should new points be added to
self.growing_path = self
for command, coord_string in pairs:
self.handle_command(command, coord_string)
#people treat y-coordinate differently
self.rotate(np.pi, RIGHT)
def handle_command(self, command, coord_string):
#new_points are the points that will be added to the curr_points
#list. This variable may get modified in the conditionals below.
points = self.growing_path.points
new_points = self.string_to_points(coord_string)
if command == "M": #moveto
if len(points) > 0:
self.add_subpath(new_points)
self.growing_path = self.subpath_mobjects[-1]
else:
self.growing_path.start_at(new_points[0])
return
elif command in ["L", "H", "V"]: #lineto
if command == "H":
new_points[0,1] = points[-1,1]
elif command == "V":
new_points[0,1] = new_points[0,0]
new_points[0,0] = points[-1,0]
new_points = new_points[[0, 0, 0]]
elif command == "C": #curveto
pass #Yay! No action required
elif command in ["S", "T"]: #smooth curveto
handle1 = points[-1]+(points[-1]-points[-2])
new_points = np.append([handle1], new_points, axis = 0)
if command in ["Q", "T"]: #quadratic Bezier curve
#TODO, this is a suboptimal approximation
new_points = np.append([new_points[0]], new_points, axis = 0)
elif command == "A": #elliptical Arc
raise Exception("Not implemented")
elif command == "Z": #closepath
if not is_closed(points):
#Both handles and new anchor are the start
new_points = points[[0, 0, 0]]
self.growing_path.add_control_points(new_points)
def string_to_points(self, coord_string):
numbers = [
float(s)
for s in coord_string.split(" ")
if s is not ""
]
if len(numbers)%2 == 1:
numbers.append(0)
num_points = len(numbers)/2
result = np.zeros((num_points, self.dim))
result[:,:2] = np.array(numbers).reshape((num_points, 2))
return result