mirror of
https://github.com/3b1b/manim.git
synced 2025-07-30 13:34:19 +08:00
Introduced notion of a subpath
This commit is contained in:
61
camera.py
61
camera.py
@ -84,27 +84,28 @@ class Camera(object):
|
||||
print mobject
|
||||
# raise Exception("I don't know how to display that")
|
||||
|
||||
# def display_region(self, region):
|
||||
# (h, w) = self.pixel_shape
|
||||
# scalar = 2*self.space_shape[0] / h
|
||||
# xs = scalar*np.arange(-w/2, w/2)+self.space_center[0]
|
||||
# ys = -scalar*np.arange(-h/2, h/2)+self.space_center[1]
|
||||
# x_array = np.dot(np.ones((h, 1)), xs.reshape((1, w)))
|
||||
# y_array = np.dot(ys.reshape(h, 1), np.ones((1, w)))
|
||||
# covered = region.condition(x_array, y_array)
|
||||
# rgb = np.array(Color(region.color).get_rgb())
|
||||
# rgb = (255*rgb).astype('uint8')
|
||||
# self.pixel_array[covered] = rgb
|
||||
def display_region(self, region):
|
||||
(h, w) = self.pixel_shape
|
||||
scalar = 2*self.space_shape[0] / h
|
||||
xs = scalar*np.arange(-w/2, w/2)+self.space_center[0]
|
||||
ys = -scalar*np.arange(-h/2, h/2)+self.space_center[1]
|
||||
x_array = np.dot(np.ones((h, 1)), xs.reshape((1, w)))
|
||||
y_array = np.dot(ys.reshape(h, 1), np.ones((1, w)))
|
||||
covered = region.condition(x_array, y_array)
|
||||
rgb = np.array(Color(region.color).get_rgb())
|
||||
rgb = (255*rgb).astype('uint8')
|
||||
self.pixel_array[covered] = rgb
|
||||
|
||||
|
||||
def display_vectorized(self, vect_mobject):
|
||||
if vect_mobject.is_subpath:
|
||||
#Subpath vectorized mobjects are taken care
|
||||
#of by their parent
|
||||
return
|
||||
im = Image.fromarray(self.pixel_array, mode = "RGB")
|
||||
canvas = aggdraw.Draw(im)
|
||||
pen, fill = self.get_pen_and_fill(vect_mobject)
|
||||
pathstring = self.get_pathstring(
|
||||
self.points_to_pixel_coords(vect_mobject.points),
|
||||
closed = vect_mobject.is_closed()
|
||||
)
|
||||
pathstring = self.get_pathstring(vect_mobject)
|
||||
symbol = aggdraw.Symbol(pathstring)
|
||||
canvas.symbol((0, 0), symbol, pen, fill)
|
||||
canvas.flush()
|
||||
@ -121,19 +122,23 @@ class Camera(object):
|
||||
)
|
||||
return (pen, fill)
|
||||
|
||||
def get_pathstring(self, cubic_bezier_points, closed = False):
|
||||
start = "m%d,%d"%tuple(cubic_bezier_points[0])
|
||||
#(handle1, handle2, anchor) tripletes
|
||||
triplets = zip(*[
|
||||
cubic_bezier_points[i+1::3]
|
||||
for i in range(3)
|
||||
])
|
||||
cubics = [
|
||||
"C" + ",".join(map(str, it.chain(*triplet)))
|
||||
for triplet in triplets
|
||||
]
|
||||
end = "z" if closed else ""
|
||||
return " ".join([start] + cubics + [end])
|
||||
def get_pathstring(self, vect_mobject):
|
||||
result = ""
|
||||
for mob in [vect_mobject]+vect_mobject.subpath_mobjects:
|
||||
points = mob.points
|
||||
coords = self.points_to_pixel_coords(points)
|
||||
start = "M%d %d"%tuple(coords[0])
|
||||
#(handle1, handle2, anchor) tripletes
|
||||
triplets = zip(*[
|
||||
coords[i+1::3]
|
||||
for i in range(3)
|
||||
])
|
||||
cubics = [
|
||||
"C" + " ".join(map(str, it.chain(*triplet)))
|
||||
for triplet in triplets
|
||||
]
|
||||
result += " ".join([start] + cubics)
|
||||
return result
|
||||
|
||||
def display_point_cloud(self, points, rgbs, thickness):
|
||||
if len(points) == 0:
|
||||
|
14
helpers.py
14
helpers.py
@ -9,8 +9,10 @@ import string
|
||||
import re
|
||||
from scipy import linalg
|
||||
|
||||
from constants import *
|
||||
|
||||
def get_smooth_handle_points(points, closed = False):
|
||||
|
||||
def get_smooth_handle_points(points):
|
||||
num_handles = len(points) - 1
|
||||
dim = points.shape[1]
|
||||
if num_handles < 1:
|
||||
@ -30,8 +32,8 @@ def get_smooth_handle_points(points, closed = False):
|
||||
diag[2,1:-2:2] = -2
|
||||
diag[3,0:-3:2] = 1
|
||||
#last
|
||||
diag[2,-2] = 2
|
||||
diag[1,-1] = -1
|
||||
diag[2,-2] = -1
|
||||
diag[1,-1] = 2
|
||||
#This is the b as in Ax = b, where we are solving for x,
|
||||
#and A is represented using diag. However, think of entries
|
||||
#to x and b as being points in space, not numbers
|
||||
@ -42,7 +44,7 @@ def get_smooth_handle_points(points, closed = False):
|
||||
solve_func = lambda b : linalg.solve_banded(
|
||||
(l, u), diag, b
|
||||
)
|
||||
if closed:
|
||||
if is_closed(points):
|
||||
#Get equations to relate first and last points
|
||||
matrix = diag_to_matrix((l, u), diag)
|
||||
#last row handles second derivative
|
||||
@ -74,8 +76,8 @@ def diag_to_matrix(l_and_u, diag):
|
||||
)
|
||||
return matrix
|
||||
|
||||
from constants import *
|
||||
|
||||
def is_closed(points):
|
||||
return np.all(points[0] == points[-1])
|
||||
|
||||
def color_to_rgb(color):
|
||||
return np.array(Color(color).get_rgb())
|
||||
|
@ -1,4 +1,4 @@
|
||||
|
||||
import re
|
||||
|
||||
from .mobject import Mobject
|
||||
|
||||
@ -6,10 +6,15 @@ from helpers import *
|
||||
|
||||
class VectorizedMobject(Mobject):
|
||||
CONFIG = {
|
||||
"closed" : False,
|
||||
"fill_color" : BLACK,
|
||||
"fill_opacity" : 0.0
|
||||
"fill_color" : BLACK,
|
||||
"fill_opacity" : 0.0,
|
||||
#Indicates that it will not be displayed, but
|
||||
#that it should count in parent mobject's path
|
||||
"is_subpath" : False,
|
||||
}
|
||||
def __init__(self, *args, **kwargs):
|
||||
self.subpath_mobjects = []
|
||||
Mobject.__init__(self, *args, **kwargs)
|
||||
|
||||
## Colors
|
||||
def init_colors(self):
|
||||
@ -51,17 +56,6 @@ class VectorizedMobject(Mobject):
|
||||
self.points[0] = point
|
||||
return self
|
||||
|
||||
def close(self):
|
||||
self.closed = True
|
||||
return self
|
||||
|
||||
def open(self):
|
||||
self.closed = False
|
||||
return self
|
||||
|
||||
def is_closed(self):
|
||||
return self.closed
|
||||
|
||||
def add_point(self, handle1, handle2, point):
|
||||
self.points = np.append(
|
||||
self.points,
|
||||
@ -70,6 +64,9 @@ class VectorizedMobject(Mobject):
|
||||
)
|
||||
return self
|
||||
|
||||
def is_closed(self):
|
||||
return is_closed(self.points)
|
||||
|
||||
def set_anchors_and_handles(self, anchors, handles1, handles2):
|
||||
assert(len(anchors) == len(handles1)+1)
|
||||
assert(len(anchors) == len(handles2)+1)
|
||||
@ -84,7 +81,6 @@ class VectorizedMobject(Mobject):
|
||||
def set_points_as_corners(self, points):
|
||||
if len(points) <= 1:
|
||||
return self
|
||||
points = self.close_if_needed(points)
|
||||
handles1 = points[:-1]
|
||||
handles2 = points[1:]
|
||||
self.set_anchors_and_handles(points, handles1, handles2)
|
||||
@ -93,28 +89,23 @@ class VectorizedMobject(Mobject):
|
||||
def set_points_smoothly(self, points):
|
||||
if len(points) <= 1:
|
||||
return self
|
||||
points = self.close_if_needed(points)
|
||||
h1, h2 = get_smooth_handle_points(points, self.is_closed())
|
||||
h1, h2 = get_smooth_handle_points(points)
|
||||
self.set_anchors_and_handles(points, h1, h2)
|
||||
return self
|
||||
|
||||
def close_if_needed(self, points):
|
||||
if self.is_closed() and not np.all(points[0] == points[-1]):
|
||||
points = np.append(
|
||||
points,
|
||||
[points[0]],
|
||||
axis = 0
|
||||
)
|
||||
return points
|
||||
def set_points(self, points):
|
||||
self.points = points
|
||||
return self
|
||||
|
||||
def set_points(self, points, mode = "smooth"):
|
||||
points = np.array(points)
|
||||
def set_anchor_points(self, points, mode = "smooth"):
|
||||
if not isinstance(points, np.ndarray):
|
||||
points = np.array(points)
|
||||
if self.closed and not is_closed(points):
|
||||
points = np.append(points, [points[0]], axis = 0)
|
||||
if mode == "smooth":
|
||||
self.set_points_smoothly(points)
|
||||
elif mode == "corners":
|
||||
self.set_points_as_corners(points)
|
||||
elif mode == "handles_included":
|
||||
self.points = points
|
||||
else:
|
||||
raise Exception("Unknown mode")
|
||||
return self
|
||||
@ -130,6 +121,25 @@ class VectorizedMobject(Mobject):
|
||||
def make_jagged(self):
|
||||
return self.change_mode("corners")
|
||||
|
||||
def add_subpath(self, points):
|
||||
"""
|
||||
A VectorizedMobject is meant to represnt
|
||||
a single "path", in the svg sense of the word.
|
||||
However, one such path may really consit of separate
|
||||
continuous components if there is a move_to command.
|
||||
|
||||
These other portions of the path will be treated as submobjects,
|
||||
but will be tracked in a separate special list for when
|
||||
it comes time to display.
|
||||
"""
|
||||
subpath_mobject = VectorizedMobject(
|
||||
is_subpath = True
|
||||
)
|
||||
subpath_mobject.set_points(points)
|
||||
self.subpath_mobjects.append(subpath_mobject)
|
||||
self.add(subpath_mobject)
|
||||
return self
|
||||
|
||||
## Information about line
|
||||
|
||||
def component_curves(self):
|
||||
@ -157,24 +167,6 @@ class VectorizedMobject(Mobject):
|
||||
|
||||
## Alignment
|
||||
|
||||
# def align_points_with_larger(self, larger_mobject):
|
||||
# assert(isinstance(larger_mobject, VectorizedMobject))
|
||||
# anchors, handles1, handles2 = self.get_anchors_and_handles()
|
||||
# old_n = len(anchors)
|
||||
# new_n = larger_mobject.get_num_points()
|
||||
# #Buff up list of anchor points to appropriate length
|
||||
# new_anchors = anchors[old_n*np.arange(new_n)/new_n]
|
||||
# #At first, handles are on anchor points
|
||||
# #the [2:] is because start has no handles
|
||||
# new_points = new_anchors.repeat(3, axis = 0)[2:]
|
||||
# #These indices indicate the spots between genuinely
|
||||
# #different anchor points in new_points list
|
||||
# indices = 3*(np.arange(old_n) * new_n / old_n)[1:]
|
||||
# new_points[indices+1] = handles1
|
||||
# new_points[indices+2] = handles2
|
||||
# self.set_points(new_points, mode = "handles_included")
|
||||
# return self
|
||||
|
||||
def align_points_with_larger(self, larger_mobject):
|
||||
assert(isinstance(larger_mobject, VectorizedMobject))
|
||||
points = np.array([self.points[0]])
|
||||
@ -213,39 +205,7 @@ class VectorizedMobject(Mobject):
|
||||
getattr(mobject2, attr),
|
||||
alpha
|
||||
))
|
||||
|
||||
|
||||
def get_partial_bezier_points(self, x, pre_x = True):
|
||||
"""
|
||||
Input is a number number 0 <= x <= 1, which
|
||||
corresponds to some point along the curve.
|
||||
This point lies on some cubic. This function
|
||||
return the four bezeir points giving a partial
|
||||
version of that cubic. Either the part before x,
|
||||
if pre_x == True, otherwise the part after x
|
||||
"""
|
||||
if x >= 1.0:
|
||||
return np.array(4*[self.points[-1]])
|
||||
num_cubics = self.get_num_points()-1
|
||||
which_curve = int(x*num_cubics)
|
||||
alpha = num_cubics*(x%(1./num_cubics))
|
||||
cubic = self.get_nth_curve(which_curve)
|
||||
new_anchor = cubic(alpha)
|
||||
a1, h1, h2, a2 = self.points[3*which_curve:3*which_curve+4]
|
||||
if pre_x:
|
||||
return np.array([
|
||||
a1,
|
||||
interpolate(cubic(alpha/3), h1, alpha),
|
||||
interpolate(cubic(2*alpha/3), h2, alpha),
|
||||
new_anchor
|
||||
])
|
||||
else:
|
||||
return np.array([
|
||||
new_anchor,
|
||||
interpolate(h1, cubic((1-alpha)/3), alpha),
|
||||
interpolate(h2, cubic(2*(1-alpha/3), alpha)),
|
||||
a2
|
||||
])
|
||||
self.closed = mobject1.is_closed() and mobject2.is_closed()
|
||||
|
||||
|
||||
def become_partial(self, mobject, a, b):
|
||||
@ -255,34 +215,31 @@ class VectorizedMobject(Mobject):
|
||||
#-A start, which is some ending portion of an inner cubic
|
||||
#-An end, which is the starting portion of a later inner cubic
|
||||
self.open()
|
||||
if a <= 0 and b >= 1 and mobject.is_closed():
|
||||
self.close()
|
||||
if a <= 0 and b >= 1:
|
||||
if mobject.is_closed():
|
||||
self.close()
|
||||
self.set_points(mobject.points, "handles_included")
|
||||
return self
|
||||
num_cubics = mobject.get_num_points()-1
|
||||
if a <= 0:
|
||||
lower_index = 0
|
||||
start_points = np.zeros((0, 3))
|
||||
else:
|
||||
lower_index = 3*int(a*num_cubics)+4
|
||||
start_points = mobject.get_partial_bezier_points(
|
||||
a, pre_x = False
|
||||
)
|
||||
if b >= 1:
|
||||
upper_index = len(mobject.points)+1
|
||||
end_points = np.zeros((0, 3))
|
||||
else:
|
||||
upper_index = 3*int(b*num_cubics)
|
||||
end_points = mobject.get_partial_bezier_points(
|
||||
b, pre_x = True
|
||||
)
|
||||
new_points = reduce(
|
||||
lambda a, b : np.append(a, b, axis = 0),
|
||||
[
|
||||
start_points,
|
||||
mobject.points[lower_index:upper_index],
|
||||
end_points
|
||||
]
|
||||
lower_index = int(a*num_cubics)
|
||||
upper_index = int(b*num_cubics)
|
||||
points = np.array(
|
||||
mobject.points[3*lower_index:3*upper_index+4]
|
||||
)
|
||||
self.set_points(new_points, "handles_included")
|
||||
if len(points) > 1:
|
||||
#This is a kind of neat-but-dense algorithm
|
||||
#for how to interpolate the handle points
|
||||
a_residue = (num_cubics*a)%1
|
||||
points[:4] = [
|
||||
bezier(points[i:4])(a_residue)
|
||||
for i in range(4)
|
||||
]
|
||||
b_residue = (num_cubics*b)%1
|
||||
points[-4:] = [
|
||||
bezier(points[-4:len(points)-3+i])(b_residue)
|
||||
for i in range(4)
|
||||
]
|
||||
self.set_points(points, "handles_included")
|
||||
return self
|
||||
|
||||
|
||||
@ -294,7 +251,32 @@ class VectorizedPoint(VectorizedMobject):
|
||||
VectorizedMobject.__init__(self, **kwargs)
|
||||
self.set_points([location])
|
||||
|
||||
|
||||
class VectorizedMobjectFromSVGPathstring(VectorizedMobject):
|
||||
def __init__(self, path_string, **kwargs):
|
||||
digest_locals(self)
|
||||
VectorizedMobject.__init__(self, **kwargs)
|
||||
|
||||
def generate_points(self):
|
||||
path_commands = [
|
||||
"M", #moveto
|
||||
"L", #lineto
|
||||
"H", #horizontal lineto
|
||||
"V", #vertical lineto
|
||||
"C", #curveto
|
||||
"S", #smooth curveto
|
||||
"Q", #quadratic Bezier curve
|
||||
"T", #smooth quadratic Bezier curveto
|
||||
"A", #elliptical Arc
|
||||
"Z", #closepath
|
||||
]
|
||||
pattern = "[%s]"%("".join(path_commands))
|
||||
pairs = zip(
|
||||
re.findall(pattern, self.pathstring),
|
||||
re.split(pattern, self.path_string)
|
||||
)
|
||||
for command, coord_string in pairs:
|
||||
pass
|
||||
#TODO
|
||||
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user