Refactored Neural Network Layers into their own files.

This commit is contained in:
Alec Helbling
2022-04-14 01:53:12 -04:00
parent b1490c0117
commit 7be4dfc8a4
18 changed files with 445 additions and 464 deletions

View File

@ -1,241 +0,0 @@
from manim import *
from manim_ml.neural_network.layers import ConnectiveLayer, VGroupNeuralNetworkLayer
import numpy as np
import math
class GaussianDistribution(VGroup):
"""Object for drawing a Gaussian distribution"""
def __init__(self, axes, mean=None, cov=None, **kwargs):
super(VGroup, self).__init__(**kwargs)
self.axes = axes
self.mean = mean
self.cov = cov
if mean is None:
self.mean = np.array([0.0, 0.0])
if cov is None:
self.cov = np.array([[3, 0], [0, 3]])
# Make the Gaussian
self.ellipses = self.construct_gaussian_distribution(self.mean, self.cov)
self.ellipses.set_z_index(2)
@override_animation(Create)
def _create_gaussian_distribution(self):
return Create(self.ellipses)
def compute_covariance_rotation_and_scale(self, covariance):
# Get the eigenvectors and eigenvalues
eigenvalues, eigenvectors = np.linalg.eig(covariance)
y, x = eigenvectors[0, 1], eigenvectors[0, 0]
center_location = np.array([y, x, 0])
center_location = self.axes.coords_to_point(*center_location)
angle = math.atan(x / y) # x over y to denote the angle between y axis and vector
# Calculate the width and height
height = np.abs(eigenvalues[0])
width = np.abs(eigenvalues[1])
shape_coord = np.array([width, height, 0])
shape_coord = self.axes.coords_to_point(*shape_coord)
width = shape_coord[0]
height = shape_coord[1]
return angle, width, height
def construct_gaussian_distribution(self, mean, covariance, color=ORANGE,
num_ellipses=4):
"""Returns a 2d Gaussian distribution object with given mean and covariance"""
# map mean and covariance to frame coordinates
mean = self.axes.coords_to_point(*mean)
# Figure out the scale and angle of rotation
rotation, width, height = self.compute_covariance_rotation_and_scale(covariance)
# Make covariance ellipses
opacity = 0.0
ellipses = VGroup()
for ellipse_number in range(num_ellipses):
opacity += 1.0 / num_ellipses
ellipse_width = width * (1 - opacity)
ellipse_height = height * (1 - opacity)
ellipse = Ellipse(
width=ellipse_width,
height=ellipse_height,
color=color,
fill_opacity=opacity,
stroke_width=0.0
)
ellipse.move_to(mean)
ellipse.rotate(rotation)
ellipses.add(ellipse)
return ellipses
class EmbeddingLayer(VGroupNeuralNetworkLayer):
"""NeuralNetwork embedding object that can show probability distributions"""
def __init__(self, point_radius=0.02):
super(EmbeddingLayer, self).__init__()
self.point_radius = point_radius
self.axes = Axes(
tips=False,
x_length=1,
y_length=1
)
self.add(self.axes)
# Make point cloud
mean = np.array([0, 0])
covariance = np.array([[1.5, 0], [0, 1.5]])
self.point_cloud = self.construct_gaussian_point_cloud(mean, covariance)
self.add(self.point_cloud)
# Make latent distribution
self.latent_distribution = GaussianDistribution(self.axes, mean=mean, cov=covariance) # Use defaults
def sample_point_location_from_distribution(self):
"""Samples from the current latent distribution"""
mean = self.latent_distribution.mean
cov = self.latent_distribution.cov
point = np.random.multivariate_normal(mean, cov)
# Make dot at correct location
location = self.axes.coords_to_point(point[0], point[1])
return location
def get_distribution_location(self):
"""Returns mean of latent distribution in axes frame"""
return self.axes.coords_to_point(self.latent_distribution.mean)
def construct_gaussian_point_cloud(self, mean, covariance, point_color=BLUE,
num_points=200):
"""Plots points sampled from a Gaussian with the given mean and covariance"""
# Sample points from a Gaussian
points = np.random.multivariate_normal(mean, covariance, num_points)
# Add each point to the axes
point_dots = VGroup()
for point in points:
point_location = self.axes.coords_to_point(*point)
dot = Dot(point_location, color=point_color, radius=self.point_radius/2)
point_dots.add(dot)
return point_dots
def make_forward_pass_animation(self):
"""Forward pass animation"""
# Make ellipse object corresponding to the latent distribution
self.latent_distribution = GaussianDistribution(self.axes) # Use defaults
# Create animation
animations = []
#create_distribution = Create(self.latent_distribution.construct_gaussian_distribution(self.latent_distribution.mean, self.latent_distribution.cov)) #Create(self.latent_distribution)
create_distribution = Create(self.latent_distribution.ellipses)
animations.append(create_distribution)
animation_group = AnimationGroup(*animations)
return animation_group
@override_animation(Create)
def _create_embedding_layer(self, **kwargs):
# Plot each point at once
point_animations = []
for point in self.point_cloud:
point_animations.append(GrowFromCenter(point))
point_animation = AnimationGroup(*point_animations, lag_ratio=1.0, run_time=2.5)
return point_animation
class FeedForwardToEmbedding(ConnectiveLayer):
"""Feed Forward to Embedding Layer"""
def __init__(self, input_layer, output_layer, animation_dot_color=RED, dot_radius=0.03):
super().__init__(input_layer, output_layer)
self.feed_forward_layer = input_layer
self.embedding_layer = output_layer
self.animation_dot_color = animation_dot_color
self.dot_radius = dot_radius
def make_forward_pass_animation(self, run_time=1.5):
"""Makes dots converge on a specific location"""
# Find point to converge on by sampling from gaussian distribution
location = self.embedding_layer.sample_point_location_from_distribution()
# Set the embedding layer latent distribution
# Move to location
animations = []
# Move the dots to the centers of each of the nodes in the FeedForwardLayer
dots = []
for node in self.feed_forward_layer.node_group:
new_dot = Dot(node.get_center(), radius=self.dot_radius, color=self.animation_dot_color)
per_node_succession = Succession(
Create(new_dot),
new_dot.animate.move_to(location),
)
animations.append(per_node_succession)
dots.append(new_dot)
self.dots = VGroup(*dots)
self.add(self.dots)
# Follow up with remove animations
remove_animations = []
for dot in dots:
remove_animations.append(FadeOut(dot))
self.remove(self.dots)
remove_animations = AnimationGroup(*remove_animations, run_time=0.2)
animations = AnimationGroup(*animations)
animation_group = Succession(animations, remove_animations, lag_ratio=1.0)
return animation_group
@override_animation(Create)
def _create_embedding_layer(self, **kwargs):
return AnimationGroup()
class EmbeddingToFeedForward(ConnectiveLayer):
"""Feed Forward to Embedding Layer"""
def __init__(self, input_layer, output_layer, animation_dot_color=RED, dot_radius=0.03):
super().__init__(input_layer, output_layer)
self.feed_forward_layer = output_layer
self.embedding_layer = input_layer
self.animation_dot_color = animation_dot_color
self.dot_radius = dot_radius
def make_forward_pass_animation(self, run_time=1.5):
"""Makes dots diverge from the given location and move the decoder"""
# Find point to converge on by sampling from gaussian distribution
location = self.embedding_layer.sample_point_location_from_distribution()
# Move to location
animations = []
# Move the dots to the centers of each of the nodes in the FeedForwardLayer
dots = []
for node in self.feed_forward_layer.node_group:
new_dot = Dot(location, radius=self.dot_radius, color=self.animation_dot_color)
per_node_succession = Succession(
Create(new_dot),
new_dot.animate.move_to(node.get_center()),
)
animations.append(per_node_succession)
dots.append(new_dot)
# Follow up with remove animations
remove_animations = []
for dot in dots:
remove_animations.append(FadeOut(dot))
remove_animations = AnimationGroup(*remove_animations, run_time=0.2)
animations = AnimationGroup(*animations)
animation_group = Succession(animations, remove_animations, lag_ratio=1.0)
return animation_group
@override_animation(Create)
def _create_embedding_layer(self, **kwargs):
return AnimationGroup()
class NeuralNetworkEmbeddingTestScene(Scene):
def construct(self):
nne = EmbeddingLayer()
mean = np.array([0, 0])
cov = np.array([[5.0, 1.0], [0.0, 1.0]])
point_cloud = nne.construct_gaussian_point_cloud(mean, cov)
nne.add(point_cloud)
gaussian = nne.construct_gaussian_distribution(mean, cov)
nne.add(gaussian)
self.add(nne)

View File

@ -1,115 +0,0 @@
from manim import *
from manim_ml.image import GrayscaleImageMobject
from manim_ml.neural_network.layers import ConnectiveLayer, NeuralNetworkLayer
class ImageLayer(NeuralNetworkLayer):
"""Single Image Layer for Neural Network"""
def __init__(self, numpy_image, height=1.5):
super().__init__()
self.set_z_index(1)
self.numpy_image = numpy_image
if len(np.shape(self.numpy_image)) == 2:
# Assumed Grayscale
self.image_mobject = GrayscaleImageMobject(self.numpy_image, height=height)
elif len(np.shape(self.numpy_image)) == 3:
# Assumed RGB
self.image_mobject = ImageMobject(self.numpy_image)
self.add(self.image_mobject)
"""
# Make an invisible box of the same width as the image object so that
# methods like get_right() work correctly.
self.invisible_rectangle = SurroundingRectangle(self.image_mobject, color=WHITE)
self.invisible_rectangle.set_fill(WHITE, opacity=0.0)
# self.invisible_rectangle.set_stroke(WHITE, opacity=0.0)
self.invisible_rectangle.move_to(self.image_mobject.get_center())
self.add(self.invisible_rectangle)
"""
@override_animation(Create)
def _create_animation(self, **kwargs):
return FadeIn(self.image_mobject)
def make_forward_pass_animation(self):
return Create(self.image_mobject)
def move_to(self, location):
"""Override of move to"""
self.image_mobject.move_to(location)
def get_right(self):
"""Override get right"""
return self.image_mobject.get_right()
@property
def width(self):
return self.image_mobject.width
class ImageToFeedForward(ConnectiveLayer):
"""Image Layer to FeedForward layer"""
def __init__(self, input_layer, output_layer, animation_dot_color=RED,
dot_radius=0.05):
self.animation_dot_color = animation_dot_color
self.dot_radius = dot_radius
self.feed_forward_layer = output_layer
self.image_layer = input_layer
super().__init__(input_layer, output_layer)
def make_forward_pass_animation(self):
"""Makes dots diverge from the given location and move to the feed forward nodes decoder"""
animations = []
dots = []
image_mobject = self.image_layer.image_mobject
# Move the dots to the centers of each of the nodes in the FeedForwardLayer
image_location = image_mobject.get_center()
for node in self.feed_forward_layer.node_group:
new_dot = Dot(image_location, radius=self.dot_radius, color=self.animation_dot_color)
per_node_succession = Succession(
Create(new_dot),
new_dot.animate.move_to(node.get_center()),
)
animations.append(per_node_succession)
dots.append(new_dot)
self.add(VGroup(*dots))
animation_group = AnimationGroup(*animations)
return animation_group
@override_animation(Create)
def _create_override(self):
return AnimationGroup()
class FeedForwardToImage(ConnectiveLayer):
"""Image Layer to FeedForward layer"""
def __init__(self, input_layer, output_layer, animation_dot_color=RED,
dot_radius=0.05):
self.animation_dot_color = animation_dot_color
self.dot_radius = dot_radius
self.feed_forward_layer = input_layer
self.image_layer = output_layer
super().__init__(input_layer, output_layer)
def make_forward_pass_animation(self):
"""Makes dots diverge from the given location and move to the feed forward nodes decoder"""
animations = []
image_mobject = self.image_layer.image_mobject
# Move the dots to the centers of each of the nodes in the FeedForwardLayer
image_location = image_mobject.get_center()
for node in self.feed_forward_layer.node_group:
new_dot = Dot(node.get_center(), radius=self.dot_radius, color=self.animation_dot_color)
per_node_succession = Succession(
Create(new_dot),
new_dot.animate.move_to(image_location),
)
animations.append(per_node_succession)
animation_group = AnimationGroup(*animations)
return animation_group
@override_animation(Create)
def _create_override(self):
return AnimationGroup()

View File

@ -0,0 +1,9 @@
from .embedding_to_feed_forward import EmbeddingToFeedForward
from .embedding import EmbeddingLayer
from .feed_forward_to_embedding import FeedForwardToEmbedding
from .feed_forward_to_feed_forward import FeedForwardToFeedForward
from .feed_forward_to_image import FeedForwardToImage
from .feed_forward import FeedForwardLayer
from .image_to_feed_forward import ImageToFeedForward
from .image import ImageLayer
from .parent_layers import ConnectiveLayer, NeuralNetworkLayer

View File

@ -0,0 +1,91 @@
from manim import *
from manim_ml.probability import GaussianDistribution
from manim_ml.neural_network.layers.parent_layers import VGroupNeuralNetworkLayer
class EmbeddingLayer(VGroupNeuralNetworkLayer):
"""NeuralNetwork embedding object that can show probability distributions"""
def __init__(self, point_radius=0.02):
super(EmbeddingLayer, self).__init__()
self.point_radius = point_radius
self.axes = Axes(
tips=False,
x_length=1,
y_length=1
)
self.add(self.axes)
# Make point cloud
mean = np.array([0, 0])
covariance = np.array([[1.5, 0], [0, 1.5]])
self.point_cloud = self.construct_gaussian_point_cloud(mean, covariance)
self.add(self.point_cloud)
# Make latent distribution
self.latent_distribution = GaussianDistribution(self.axes, mean=mean, cov=covariance) # Use defaults
def sample_point_location_from_distribution(self):
"""Samples from the current latent distribution"""
mean = self.latent_distribution.mean
cov = self.latent_distribution.cov
point = np.random.multivariate_normal(mean, cov)
# Make dot at correct location
location = self.axes.coords_to_point(point[0], point[1])
return location
def get_distribution_location(self):
"""Returns mean of latent distribution in axes frame"""
return self.axes.coords_to_point(self.latent_distribution.mean)
def construct_gaussian_point_cloud(self, mean, covariance, point_color=BLUE,
num_points=200):
"""Plots points sampled from a Gaussian with the given mean and covariance"""
# Sample points from a Gaussian
points = np.random.multivariate_normal(mean, covariance, num_points)
# Add each point to the axes
point_dots = VGroup()
for point in points:
point_location = self.axes.coords_to_point(*point)
dot = Dot(point_location, color=point_color, radius=self.point_radius/2)
point_dots.add(dot)
return point_dots
def make_forward_pass_animation(self):
"""Forward pass animation"""
# Make ellipse object corresponding to the latent distribution
self.latent_distribution = GaussianDistribution(self.axes) # Use defaults
# Create animation
animations = []
#create_distribution = Create(self.latent_distribution.construct_gaussian_distribution(self.latent_distribution.mean, self.latent_distribution.cov)) #Create(self.latent_distribution)
create_distribution = Create(self.latent_distribution.ellipses)
animations.append(create_distribution)
animation_group = AnimationGroup(*animations)
return animation_group
@override_animation(Create)
def _create_embedding_layer(self, **kwargs):
# Plot each point at once
point_animations = []
for point in self.point_cloud:
point_animations.append(GrowFromCenter(point))
point_animation = AnimationGroup(*point_animations, lag_ratio=1.0, run_time=2.5)
return point_animation
class NeuralNetworkEmbeddingTestScene(Scene):
def construct(self):
nne = EmbeddingLayer()
mean = np.array([0, 0])
cov = np.array([[5.0, 1.0], [0.0, 1.0]])
point_cloud = nne.construct_gaussian_point_cloud(mean, cov)
nne.add(point_cloud)
gaussian = nne.construct_gaussian_distribution(mean, cov)
nne.add(gaussian)
self.add(nne)

View File

@ -0,0 +1,43 @@
from manim import *
from manim_ml.neural_network.layers.parent_layers import ConnectiveLayer
class EmbeddingToFeedForward(ConnectiveLayer):
"""Feed Forward to Embedding Layer"""
def __init__(self, input_layer, output_layer, animation_dot_color=RED, dot_radius=0.03):
super().__init__(input_layer, output_layer)
self.feed_forward_layer = output_layer
self.embedding_layer = input_layer
self.animation_dot_color = animation_dot_color
self.dot_radius = dot_radius
def make_forward_pass_animation(self, run_time=1.5):
"""Makes dots diverge from the given location and move the decoder"""
# Find point to converge on by sampling from gaussian distribution
location = self.embedding_layer.sample_point_location_from_distribution()
# Move to location
animations = []
# Move the dots to the centers of each of the nodes in the FeedForwardLayer
dots = []
for node in self.feed_forward_layer.node_group:
new_dot = Dot(location, radius=self.dot_radius, color=self.animation_dot_color)
per_node_succession = Succession(
Create(new_dot),
new_dot.animate.move_to(node.get_center()),
)
animations.append(per_node_succession)
dots.append(new_dot)
# Follow up with remove animations
remove_animations = []
for dot in dots:
remove_animations.append(FadeOut(dot))
remove_animations = AnimationGroup(*remove_animations, run_time=0.2)
animations = AnimationGroup(*animations)
animation_group = Succession(animations, remove_animations, lag_ratio=1.0)
return animation_group
@override_animation(Create)
def _create_embedding_layer(self, **kwargs):
return AnimationGroup()

View File

@ -1,5 +1,5 @@
from manim import *
from manim_ml.neural_network.layers import VGroupNeuralNetworkLayer, ConnectiveLayer
from manim_ml.neural_network.layers.parent_layers import VGroupNeuralNetworkLayer
class FeedForwardLayer(VGroupNeuralNetworkLayer):
"""Handles rendering a layer for a neural network"""
@ -64,65 +64,4 @@ class FeedForwardLayer(VGroupNeuralNetworkLayer):
animations.append(Create(node))
animation_group = AnimationGroup(*animations, lag_ratio=0.0)
return animation_group
class FeedForwardToFeedForward(ConnectiveLayer):
"""Layer for connecting FeedForward layer to FeedForwardLayer"""
def __init__(self, input_layer, output_layer, passing_flash=True,
dot_radius=0.05, animation_dot_color=RED, edge_color=WHITE,
edge_width=0.5):
super().__init__(input_layer, output_layer)
self.passing_flash = passing_flash
self.edge_color = edge_color
self.dot_radius = dot_radius
self.animation_dot_color = animation_dot_color
self.edge_width = edge_width
self.edges = self.construct_edges()
self.add(self.edges)
def construct_edges(self):
# Go through each node in the two layers and make a connecting line
edges = []
for node_i in self.input_layer.node_group:
for node_j in self.output_layer.node_group:
line = Line(node_i.get_center(), node_j.get_center(),
color=self.edge_color, stroke_width=self.edge_width)
edges.append(line)
edges = VGroup(*edges)
return edges
def make_forward_pass_animation(self, run_time=1):
"""Animation for passing information from one FeedForwardLayer to the next"""
path_animations = []
dots = []
for edge in self.edges:
dot = Dot(color=self.animation_dot_color, fill_opacity=1.0, radius=self.dot_radius)
# Add to dots group
dots.append(dot)
# Make the animation
if self.passing_flash:
anim = ShowPassingFlash(edge.copy().set_color(self.animation_dot_color), time_width=0.2, run_time=3)
else:
anim = MoveAlongPath(dot, edge, run_time=run_time, rate_function=sigmoid)
path_animations.append(anim)
if not self.passing_flash:
dots = VGroup(*dots)
self.add(dots)
path_animations = AnimationGroup(*path_animations)
return path_animations
@override_animation(Create)
def _create_animation(self, **kwargs):
animations = []
for edge in self.edges:
animations.append(Create(edge))
animation_group = AnimationGroup(*animations, lag_ratio=0.0)
return animation_group
return animation_group

View File

@ -0,0 +1,47 @@
from manim import *
from manim_ml.neural_network.layers.parent_layers import ConnectiveLayer
class FeedForwardToEmbedding(ConnectiveLayer):
"""Feed Forward to Embedding Layer"""
def __init__(self, input_layer, output_layer, animation_dot_color=RED, dot_radius=0.03):
super().__init__(input_layer, output_layer)
self.feed_forward_layer = input_layer
self.embedding_layer = output_layer
self.animation_dot_color = animation_dot_color
self.dot_radius = dot_radius
def make_forward_pass_animation(self, run_time=1.5):
"""Makes dots converge on a specific location"""
# Find point to converge on by sampling from gaussian distribution
location = self.embedding_layer.sample_point_location_from_distribution()
# Set the embedding layer latent distribution
# Move to location
animations = []
# Move the dots to the centers of each of the nodes in the FeedForwardLayer
dots = []
for node in self.feed_forward_layer.node_group:
new_dot = Dot(node.get_center(), radius=self.dot_radius, color=self.animation_dot_color)
per_node_succession = Succession(
Create(new_dot),
new_dot.animate.move_to(location),
)
animations.append(per_node_succession)
dots.append(new_dot)
self.dots = VGroup(*dots)
self.add(self.dots)
# Follow up with remove animations
remove_animations = []
for dot in dots:
remove_animations.append(FadeOut(dot))
self.remove(self.dots)
remove_animations = AnimationGroup(*remove_animations, run_time=0.2)
animations = AnimationGroup(*animations)
animation_group = Succession(animations, remove_animations, lag_ratio=1.0)
return animation_group
@override_animation(Create)
def _create_embedding_layer(self, **kwargs):
return AnimationGroup()

View File

@ -0,0 +1,64 @@
from manim import *
from manim_ml.image import GrayscaleImageMobject
from manim_ml.neural_network.layers.parent_layers import NeuralNetworkLayer, ConnectiveLayer
class FeedForwardToFeedForward(ConnectiveLayer):
"""Layer for connecting FeedForward layer to FeedForwardLayer"""
def __init__(self, input_layer, output_layer, passing_flash=True,
dot_radius=0.05, animation_dot_color=RED, edge_color=WHITE,
edge_width=0.5):
super().__init__(input_layer, output_layer)
self.passing_flash = passing_flash
self.edge_color = edge_color
self.dot_radius = dot_radius
self.animation_dot_color = animation_dot_color
self.edge_width = edge_width
self.edges = self.construct_edges()
self.add(self.edges)
def construct_edges(self):
# Go through each node in the two layers and make a connecting line
edges = []
for node_i in self.input_layer.node_group:
for node_j in self.output_layer.node_group:
line = Line(node_i.get_center(), node_j.get_center(),
color=self.edge_color, stroke_width=self.edge_width)
edges.append(line)
edges = VGroup(*edges)
return edges
def make_forward_pass_animation(self, run_time=1):
"""Animation for passing information from one FeedForwardLayer to the next"""
path_animations = []
dots = []
for edge in self.edges:
dot = Dot(color=self.animation_dot_color, fill_opacity=1.0, radius=self.dot_radius)
# Add to dots group
dots.append(dot)
# Make the animation
if self.passing_flash:
anim = ShowPassingFlash(edge.copy().set_color(self.animation_dot_color), time_width=0.2, run_time=3)
else:
anim = MoveAlongPath(dot, edge, run_time=run_time, rate_function=sigmoid)
path_animations.append(anim)
if not self.passing_flash:
dots = VGroup(*dots)
self.add(dots)
path_animations = AnimationGroup(*path_animations)
return path_animations
@override_animation(Create)
def _create_animation(self, **kwargs):
animations = []
for edge in self.edges:
animations.append(Create(edge))
animation_group = AnimationGroup(*animations, lag_ratio=0.0)
return animation_group

View File

@ -0,0 +1,36 @@
from manim import *
from manim_ml.image import GrayscaleImageMobject
from manim_ml.neural_network.layers.parent_layers import NeuralNetworkLayer, ConnectiveLayer
class FeedForwardToImage(ConnectiveLayer):
"""Image Layer to FeedForward layer"""
def __init__(self, input_layer, output_layer, animation_dot_color=RED,
dot_radius=0.05):
self.animation_dot_color = animation_dot_color
self.dot_radius = dot_radius
self.feed_forward_layer = input_layer
self.image_layer = output_layer
super().__init__(input_layer, output_layer)
def make_forward_pass_animation(self):
"""Makes dots diverge from the given location and move to the feed forward nodes decoder"""
animations = []
image_mobject = self.image_layer.image_mobject
# Move the dots to the centers of each of the nodes in the FeedForwardLayer
image_location = image_mobject.get_center()
for node in self.feed_forward_layer.node_group:
new_dot = Dot(node.get_center(), radius=self.dot_radius, color=self.animation_dot_color)
per_node_succession = Succession(
Create(new_dot),
new_dot.animate.move_to(image_location),
)
animations.append(per_node_succession)
animation_group = AnimationGroup(*animations)
return animation_group
@override_animation(Create)
def _create_override(self):
return AnimationGroup()

View File

@ -0,0 +1,37 @@
from manim import *
from manim_ml.image import GrayscaleImageMobject
from manim_ml.neural_network.layers.parent_layers import NeuralNetworkLayer
class ImageLayer(NeuralNetworkLayer):
"""Single Image Layer for Neural Network"""
def __init__(self, numpy_image, height=1.5):
super().__init__()
self.set_z_index(1)
self.numpy_image = numpy_image
if len(np.shape(self.numpy_image)) == 2:
# Assumed Grayscale
self.image_mobject = GrayscaleImageMobject(self.numpy_image, height=height)
elif len(np.shape(self.numpy_image)) == 3:
# Assumed RGB
self.image_mobject = ImageMobject(self.numpy_image)
self.add(self.image_mobject)
@override_animation(Create)
def _create_animation(self, **kwargs):
return FadeIn(self.image_mobject)
def make_forward_pass_animation(self):
return Create(self.image_mobject)
def move_to(self, location):
"""Override of move to"""
self.image_mobject.move_to(location)
def get_right(self):
"""Override get right"""
return self.image_mobject.get_right()
@property
def width(self):
return self.image_mobject.width

View File

@ -0,0 +1,38 @@
from manim import *
from manim_ml.image import GrayscaleImageMobject
from manim_ml.neural_network.layers.parent_layers import NeuralNetworkLayer, ConnectiveLayer
class ImageToFeedForward(ConnectiveLayer):
"""Image Layer to FeedForward layer"""
def __init__(self, input_layer, output_layer, animation_dot_color=RED,
dot_radius=0.05):
self.animation_dot_color = animation_dot_color
self.dot_radius = dot_radius
self.feed_forward_layer = output_layer
self.image_layer = input_layer
super().__init__(input_layer, output_layer)
def make_forward_pass_animation(self):
"""Makes dots diverge from the given location and move to the feed forward nodes decoder"""
animations = []
dots = []
image_mobject = self.image_layer.image_mobject
# Move the dots to the centers of each of the nodes in the FeedForwardLayer
image_location = image_mobject.get_center()
for node in self.feed_forward_layer.node_group:
new_dot = Dot(image_location, radius=self.dot_radius, color=self.animation_dot_color)
per_node_succession = Succession(
Create(new_dot),
new_dot.animate.move_to(node.get_center()),
)
animations.append(per_node_succession)
dots.append(new_dot)
self.add(VGroup(*dots))
animation_group = AnimationGroup(*animations)
return animation_group
@override_animation(Create)
def _create_override(self):
return AnimationGroup()

View File

@ -37,4 +37,4 @@ class ConnectiveLayer(VGroupNeuralNetworkLayer):
@abstractmethod
def make_forward_pass_animation(self):
pass
pass

View File

@ -13,11 +13,10 @@ from manim import *
import warnings
import textwrap
from numpy import string_
from manim_ml.neural_network.embedding import EmbeddingLayer, EmbeddingToFeedForward, FeedForwardToEmbedding
from manim_ml.neural_network.feed_forward import FeedForwardLayer, FeedForwardToFeedForward
from manim_ml.neural_network.image import ImageLayer, ImageToFeedForward, FeedForwardToImage
from manim_ml.neural_network.layers import \
FeedForwardLayer, FeedForwardToFeedForward, ImageLayer, \
ImageToFeedForward, FeedForwardToImage, EmbeddingLayer, \
EmbeddingToFeedForward, FeedForwardToEmbedding
class NeuralNetwork(Group):

View File

@ -4,7 +4,6 @@ In this module I define Manim visualizations for Variational Autoencoders
and Traditional Autoencoders.
"""
from types import WrapperDescriptorType
from manim import *
import numpy as np
from PIL import Image

68
manim_ml/probability.py Normal file
View File

@ -0,0 +1,68 @@
from manim import *
import numpy as np
import math
class GaussianDistribution(VGroup):
"""Object for drawing a Gaussian distribution"""
def __init__(self, axes, mean=None, cov=None, **kwargs):
super(VGroup, self).__init__(**kwargs)
self.axes = axes
self.mean = mean
self.cov = cov
if mean is None:
self.mean = np.array([0.0, 0.0])
if cov is None:
self.cov = np.array([[3, 0], [0, 3]])
# Make the Gaussian
self.ellipses = self.construct_gaussian_distribution(self.mean, self.cov)
self.ellipses.set_z_index(2)
@override_animation(Create)
def _create_gaussian_distribution(self):
return Create(self.ellipses)
def compute_covariance_rotation_and_scale(self, covariance):
# Get the eigenvectors and eigenvalues
eigenvalues, eigenvectors = np.linalg.eig(covariance)
y, x = eigenvectors[0, 1], eigenvectors[0, 0]
center_location = np.array([y, x, 0])
center_location = self.axes.coords_to_point(*center_location)
angle = math.atan(x / y) # x over y to denote the angle between y axis and vector
# Calculate the width and height
height = np.abs(eigenvalues[0])
width = np.abs(eigenvalues[1])
shape_coord = np.array([width, height, 0])
shape_coord = self.axes.coords_to_point(*shape_coord)
width = shape_coord[0]
height = shape_coord[1]
return angle, width, height
def construct_gaussian_distribution(self, mean, covariance, color=ORANGE,
num_ellipses=4):
"""Returns a 2d Gaussian distribution object with given mean and covariance"""
# map mean and covariance to frame coordinates
mean = self.axes.coords_to_point(*mean)
# Figure out the scale and angle of rotation
rotation, width, height = self.compute_covariance_rotation_and_scale(covariance)
# Make covariance ellipses
opacity = 0.0
ellipses = VGroup()
for ellipse_number in range(num_ellipses):
opacity += 1.0 / num_ellipses
ellipse_width = width * (1 - opacity)
ellipse_height = height * (1 - opacity)
ellipse = Ellipse(
width=ellipse_width,
height=ellipse_height,
color=color,
fill_opacity=opacity,
stroke_width=0.0
)
ellipse.move_to(mean)
ellipse.rotate(rotation)
ellipses.add(ellipse)
return ellipses

View File

@ -1,33 +0,0 @@
from manim import *
import numpy as np
def construct_image_mobject(input_image, height=2.3):
"""Constructs an ImageMobject from a numpy grayscale image"""
# Convert image to rgb
if len(input_image.shape) == 2:
input_image = np.repeat(input_image, 3, axis=0)
input_image = np.rollaxis(input_image, 0, start=3)
# Make the ImageMobject
image_mobject = ImageMobject(input_image, image_mode="RGB")
image_mobject.set_resampling_algorithm(RESAMPLING_ALGORITHMS["nearest"])
image_mobject.height = height
return image_mobject
class NumpyImageMobject(ImageMobject):
"""Mobject for creating images in Manim from numpy arrays"""
def __init__(self, numpy_image, height=2.3, grayscale=False):
self.numpy_image = numpy_image
self.height = height
if grayscale:
assert len(input_image.shape) == 2
input_image = np.repeat(self.numpy_image, 3, axis=0)
input_image = np.rollaxis(input_image, 0, start=3)
super().__init__(input_image, image_mode="RGB")
self.set_resampling_algorithm(RESAMPLING_ALGORITHMS["nearest"])
self.height = height

View File

@ -1,7 +1,7 @@
from manim import *
from manim_ml.neural_network.embedding import EmbeddingLayer
from manim_ml.neural_network.feed_forward import FeedForwardLayer
from manim_ml.neural_network.image import ImageLayer
from manim_ml.neural_network.layers.embedding import EmbeddingLayer
from manim_ml.neural_network.layers.feed_forward import FeedForwardLayer
from manim_ml.neural_network.layers.image import ImageLayer
from manim_ml.neural_network.neural_network import NeuralNetwork, FeedForwardNeuralNetwork
from PIL import Image
import numpy as np

View File

@ -1,6 +1,6 @@
from manim import *
from PIL import Image
from manim_ml.neural_network.embedding import EmbeddingLayer, GaussianDistribution
from manim_ml.neural_network.embedding import EmbeddingLayer
from manim_ml.neural_network.feed_forward import FeedForwardLayer
from manim_ml.neural_network.image import ImageLayer
from manim_ml.neural_network.neural_network import NeuralNetwork
@ -10,7 +10,7 @@ config.pixel_width = 1280
config.frame_height = 6.0
config.frame_width = 6.0
class GaussianScene(Scene):
class VariationalAutoencoderScene(Scene):
def construct(self):
embedding_layer = EmbeddingLayer()