Files
2022-04-14 00:33:00 -04:00

241 lines
9.5 KiB
Python

from manim import *
from manim_ml.neural_network.layers import ConnectiveLayer, VGroupNeuralNetworkLayer
import numpy as np
import math
class GaussianDistribution(VGroup):
"""Object for drawing a Gaussian distribution"""
def __init__(self, axes, mean=None, cov=None, **kwargs):
super(VGroup, self).__init__(**kwargs)
self.axes = axes
self.mean = mean
self.cov = cov
if mean is None:
self.mean = np.array([0.0, 0.0])
if cov is None:
self.cov = np.array([[3, 0], [0, 3]])
# Make the Gaussian
self.ellipses = self.construct_gaussian_distribution(self.mean, self.cov)
self.ellipses.set_z_index(2)
@override_animation(Create)
def _create_gaussian_distribution(self):
return Create(self.ellipses)
def compute_covariance_rotation_and_scale(self, covariance):
# Get the eigenvectors and eigenvalues
eigenvalues, eigenvectors = np.linalg.eig(covariance)
y, x = eigenvectors[0, 1], eigenvectors[0, 0]
center_location = np.array([y, x, 0])
center_location = self.axes.coords_to_point(*center_location)
angle = math.atan(x / y) # x over y to denote the angle between y axis and vector
# Calculate the width and height
height = np.abs(eigenvalues[0])
width = np.abs(eigenvalues[1])
shape_coord = np.array([width, height, 0])
shape_coord = self.axes.coords_to_point(*shape_coord)
width = shape_coord[0]
height = shape_coord[1]
return angle, width, height
def construct_gaussian_distribution(self, mean, covariance, color=ORANGE,
num_ellipses=4):
"""Returns a 2d Gaussian distribution object with given mean and covariance"""
# map mean and covariance to frame coordinates
mean = self.axes.coords_to_point(*mean)
# Figure out the scale and angle of rotation
rotation, width, height = self.compute_covariance_rotation_and_scale(covariance)
# Make covariance ellipses
opacity = 0.0
ellipses = VGroup()
for ellipse_number in range(num_ellipses):
opacity += 1.0 / num_ellipses
ellipse_width = width * (1 - opacity)
ellipse_height = height * (1 - opacity)
ellipse = Ellipse(
width=ellipse_width,
height=ellipse_height,
color=color,
fill_opacity=opacity,
stroke_width=0.0
)
ellipse.move_to(mean)
ellipse.rotate(rotation)
ellipses.add(ellipse)
return ellipses
class EmbeddingLayer(VGroupNeuralNetworkLayer):
"""NeuralNetwork embedding object that can show probability distributions"""
def __init__(self, point_radius=0.02):
super(EmbeddingLayer, self).__init__()
self.point_radius = point_radius
self.axes = Axes(
tips=False,
x_length=1,
y_length=1
)
self.add(self.axes)
# Make point cloud
mean = np.array([0, 0])
covariance = np.array([[1.5, 0], [0, 1.5]])
self.point_cloud = self.construct_gaussian_point_cloud(mean, covariance)
self.add(self.point_cloud)
# Make latent distribution
self.latent_distribution = GaussianDistribution(self.axes, mean=mean, cov=covariance) # Use defaults
def sample_point_location_from_distribution(self):
"""Samples from the current latent distribution"""
mean = self.latent_distribution.mean
cov = self.latent_distribution.cov
point = np.random.multivariate_normal(mean, cov)
# Make dot at correct location
location = self.axes.coords_to_point(point[0], point[1])
return location
def get_distribution_location(self):
"""Returns mean of latent distribution in axes frame"""
return self.axes.coords_to_point(self.latent_distribution.mean)
def construct_gaussian_point_cloud(self, mean, covariance, point_color=BLUE,
num_points=200):
"""Plots points sampled from a Gaussian with the given mean and covariance"""
# Sample points from a Gaussian
points = np.random.multivariate_normal(mean, covariance, num_points)
# Add each point to the axes
point_dots = VGroup()
for point in points:
point_location = self.axes.coords_to_point(*point)
dot = Dot(point_location, color=point_color, radius=self.point_radius/2)
point_dots.add(dot)
return point_dots
def make_forward_pass_animation(self):
"""Forward pass animation"""
# Make ellipse object corresponding to the latent distribution
self.latent_distribution = GaussianDistribution(self.axes) # Use defaults
# Create animation
animations = []
#create_distribution = Create(self.latent_distribution.construct_gaussian_distribution(self.latent_distribution.mean, self.latent_distribution.cov)) #Create(self.latent_distribution)
create_distribution = Create(self.latent_distribution.ellipses)
animations.append(create_distribution)
animation_group = AnimationGroup(*animations)
return animation_group
@override_animation(Create)
def _create_embedding_layer(self, **kwargs):
# Plot each point at once
point_animations = []
for point in self.point_cloud:
point_animations.append(GrowFromCenter(point))
point_animation = AnimationGroup(*point_animations, lag_ratio=1.0, run_time=2.5)
return point_animation
class FeedForwardToEmbedding(ConnectiveLayer):
"""Feed Forward to Embedding Layer"""
def __init__(self, input_layer, output_layer, animation_dot_color=RED, dot_radius=0.03):
super().__init__(input_layer, output_layer)
self.feed_forward_layer = input_layer
self.embedding_layer = output_layer
self.animation_dot_color = animation_dot_color
self.dot_radius = dot_radius
def make_forward_pass_animation(self, run_time=1.5):
"""Makes dots converge on a specific location"""
# Find point to converge on by sampling from gaussian distribution
location = self.embedding_layer.sample_point_location_from_distribution()
# Set the embedding layer latent distribution
# Move to location
animations = []
# Move the dots to the centers of each of the nodes in the FeedForwardLayer
dots = []
for node in self.feed_forward_layer.node_group:
new_dot = Dot(node.get_center(), radius=self.dot_radius, color=self.animation_dot_color)
per_node_succession = Succession(
Create(new_dot),
new_dot.animate.move_to(location),
)
animations.append(per_node_succession)
dots.append(new_dot)
self.dots = VGroup(*dots)
self.add(self.dots)
# Follow up with remove animations
remove_animations = []
for dot in dots:
remove_animations.append(FadeOut(dot))
self.remove(self.dots)
remove_animations = AnimationGroup(*remove_animations, run_time=0.2)
animations = AnimationGroup(*animations)
animation_group = Succession(animations, remove_animations, lag_ratio=1.0)
return animation_group
@override_animation(Create)
def _create_embedding_layer(self, **kwargs):
return AnimationGroup()
class EmbeddingToFeedForward(ConnectiveLayer):
"""Feed Forward to Embedding Layer"""
def __init__(self, input_layer, output_layer, animation_dot_color=RED, dot_radius=0.03):
super().__init__(input_layer, output_layer)
self.feed_forward_layer = output_layer
self.embedding_layer = input_layer
self.animation_dot_color = animation_dot_color
self.dot_radius = dot_radius
def make_forward_pass_animation(self, run_time=1.5):
"""Makes dots diverge from the given location and move the decoder"""
# Find point to converge on by sampling from gaussian distribution
location = self.embedding_layer.sample_point_location_from_distribution()
# Move to location
animations = []
# Move the dots to the centers of each of the nodes in the FeedForwardLayer
dots = []
for node in self.feed_forward_layer.node_group:
new_dot = Dot(location, radius=self.dot_radius, color=self.animation_dot_color)
per_node_succession = Succession(
Create(new_dot),
new_dot.animate.move_to(node.get_center()),
)
animations.append(per_node_succession)
dots.append(new_dot)
# Follow up with remove animations
remove_animations = []
for dot in dots:
remove_animations.append(FadeOut(dot))
remove_animations = AnimationGroup(*remove_animations, run_time=0.2)
animations = AnimationGroup(*animations)
animation_group = Succession(animations, remove_animations, lag_ratio=1.0)
return animation_group
@override_animation(Create)
def _create_embedding_layer(self, **kwargs):
return AnimationGroup()
class NeuralNetworkEmbeddingTestScene(Scene):
def construct(self):
nne = EmbeddingLayer()
mean = np.array([0, 0])
cov = np.array([[5.0, 1.0], [0.0, 1.0]])
point_cloud = nne.construct_gaussian_point_cloud(mean, cov)
nne.add(point_cloud)
gaussian = nne.construct_gaussian_distribution(mean, cov)
nne.add(gaussian)
self.add(nne)