mirror of
https://github.com/espressif/binutils-gdb.git
synced 2025-06-23 19:50:13 +08:00

My previous nm patch handled all cases but one -- if the user set NM in the environment to a path which contained an option, libtool's nm detection tries to run nm against a copy of nm with the options in it: e.g. if NM was set to "nm --blargle", and nm was found in /usr/bin, the test would try to run "/usr/bin/nm --blargle /usr/bin/nm --blargle". This is unlikely to be desirable: in this case we should run "/usr/bin/nm --blargle /usr/bin/nm". Furthermore, as part of this nm has to detect when the passed-in $NM contains a path, and in that case avoid doing a path search itself. This too was thrown off if an option contained something that looked like a path, e.g. NM="nm -B../prev-gcc"; libtool then tries to run "nm -B../prev-gcc nm" which rarely works well (and indeed it looks to see whether that nm exists, finds it doesn't, and wrongly concludes that nm -p or whatever does not work). Fix all of these by clipping all options (defined as everything including and after the first " -") before deciding whether nm contains a path (but not using the clipped value for anything else), and then removing all options from the path-modified nm before looking to see whether that nm existed. NM=my-nm now does a path search and runs e.g. /usr/bin/my-nm -B /usr/bin/my-nm NM=/usr/bin/my-nm now avoids a path search and runs e.g. /usr/bin/my-nm -B /usr/bin/my-nm NM="my-nm -p../wombat" now does a path search and runs e.g. /usr/bin/my-nm -p../wombat -B /usr/bin/my-nm NM="../prev-binutils/new-nm -B../prev-gcc" now avoids a path search: ../prev-binutils/my-nm -B../prev-gcc -B ../prev-binutils/my-nm This seems to be all combinations, including those used by GCC bootstrap (which, before this commit, fails to bootstrap when configured --with-build-config=bootstrap-lto, because the lto plugin is now using --export-symbols-regex, which requires libtool to find a working nm, while also using -B../prev-gcc to point at the lto plugin associated with the GCC just built.) Regenerate all affected configure scripts. * libtool.m4 (LT_PATH_NM): Handle user-specified NM with options, including options containing paths.
…
…
…
…
…
…
…
…
…
…
README for GNU development tools This directory contains various GNU compilers, assemblers, linkers, debuggers, etc., plus their support routines, definitions, and documentation. If you are receiving this as part of a GDB release, see the file gdb/README. If with a binutils release, see binutils/README; if with a libg++ release, see libg++/README, etc. That'll give you info about this package -- supported targets, how to use it, how to report bugs, etc. It is now possible to automatically configure and build a variety of tools with one command. To build all of the tools contained herein, run the ``configure'' script here, e.g.: ./configure make To install them (by default in /usr/local/bin, /usr/local/lib, etc), then do: make install (If the configure script can't determine your type of computer, give it the name as an argument, for instance ``./configure sun4''. You can use the script ``config.sub'' to test whether a name is recognized; if it is, config.sub translates it to a triplet specifying CPU, vendor, and OS.) If you have more than one compiler on your system, it is often best to explicitly set CC in the environment before running configure, and to also set CC when running make. For example (assuming sh/bash/ksh): CC=gcc ./configure make A similar example using csh: setenv CC gcc ./configure make Much of the code and documentation enclosed is copyright by the Free Software Foundation, Inc. See the file COPYING or COPYING.LIB in the various directories, for a description of the GNU General Public License terms under which you can copy the files. REPORTING BUGS: Again, see gdb/README, binutils/README, etc., for info on where and how to report problems.
Description
Languages
C
51.8%
Makefile
22.4%
Assembly
12.3%
C++
6%
Roff
1.4%
Other
5.4%