Merge pull request #25 from DingKe/master

use buit-in detach
This commit is contained in:
yunjey
2017-04-23 22:58:03 +09:00
committed by GitHub
6 changed files with 12 additions and 12 deletions

View File

@ -61,7 +61,7 @@ optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
# Truncated Backpropagation
def detach(states):
return [Variable(state.data) for state in states]
return [state.detach() for state in states]
# Training
for epoch in range(num_epochs):
@ -119,4 +119,4 @@ with open(sample_path, 'w') as f:
print('Sampled [%d/%d] words and save to %s'%(i+1, num_samples, sample_path))
# Save the Trained Model
torch.save(model.state_dict(), 'model.pkl')
torch.save(model.state_dict(), 'model.pkl')

View File

@ -61,7 +61,7 @@ optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
# Truncated Backpropagation
def detach(states):
return [Variable(state.data) for state in states]
return [state.detach() for state in states]
# Training
for epoch in range(num_epochs):
@ -119,4 +119,4 @@ with open(sample_path, 'w') as f:
print('Sampled [%d/%d] words and save to %s'%(i+1, num_samples, sample_path))
# Save the Trained Model
torch.save(model.state_dict(), 'model.pkl')
torch.save(model.state_dict(), 'model.pkl')

View File

@ -77,7 +77,7 @@ for epoch in range(200):
noise = Variable(torch.randn(images.size(0), 128)).cuda()
fake_images = generator(noise)
outputs = discriminator(fake_images)
outputs = discriminator(fake_images.detach())
fake_loss = criterion(outputs, fake_labels)
fake_score = outputs
@ -107,4 +107,4 @@ for epoch in range(200):
# Save the Models
torch.save(generator.state_dict(), './generator.pkl')
torch.save(discriminator.state_dict(), './discriminator.pkl')
torch.save(discriminator.state_dict(), './discriminator.pkl')

View File

@ -77,7 +77,7 @@ for epoch in range(200):
noise = Variable(torch.randn(images.size(0), 128))
fake_images = generator(noise)
outputs = discriminator(fake_images)
outputs = discriminator(fake_images.detach())
fake_loss = criterion(outputs, fake_labels)
fake_score = outputs
@ -107,4 +107,4 @@ for epoch in range(200):
# Save the Models
torch.save(generator.state_dict(), './generator.pkl')
torch.save(discriminator.state_dict(), './discriminator.pkl')
torch.save(discriminator.state_dict(), './discriminator.pkl')

View File

@ -102,7 +102,7 @@ for epoch in range(50):
noise = Variable(torch.randn(images.size(0), 128)).cuda()
fake_images = generator(noise)
outputs = discriminator(fake_images)
outputs = discriminator(fake_images.detach())
fake_loss = criterion(outputs, fake_labels)
fake_score = outputs
@ -131,4 +131,4 @@ for epoch in range(50):
# Save the Models
torch.save(generator.state_dict(), './generator.pkl')
torch.save(discriminator.state_dict(), './discriminator.pkl')
torch.save(discriminator.state_dict(), './discriminator.pkl')

View File

@ -102,7 +102,7 @@ for epoch in range(50):
noise = Variable(torch.randn(images.size(0), 128))
fake_images = generator(noise)
outputs = discriminator(fake_images)
outputs = discriminator(fake_images.detch())
fake_loss = criterion(outputs, fake_labels)
fake_score = outputs
@ -131,4 +131,4 @@ for epoch in range(50):
# Save the Models
torch.save(generator.state_dict(), './generator.pkl')
torch.save(discriminator.state_dict(), './discriminator.pkl')
torch.save(discriminator.state_dict(), './discriminator.pkl')