diff --git a/tutorials/08 - Language Model/main-gpu.py b/tutorials/08 - Language Model/main-gpu.py index ed1239e..3ee804e 100644 --- a/tutorials/08 - Language Model/main-gpu.py +++ b/tutorials/08 - Language Model/main-gpu.py @@ -61,7 +61,7 @@ optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) # Truncated Backpropagation def detach(states): - return [Variable(state.data) for state in states] + return [state.detach() for state in states] # Training for epoch in range(num_epochs): @@ -119,4 +119,4 @@ with open(sample_path, 'w') as f: print('Sampled [%d/%d] words and save to %s'%(i+1, num_samples, sample_path)) # Save the Trained Model -torch.save(model.state_dict(), 'model.pkl') \ No newline at end of file +torch.save(model.state_dict(), 'model.pkl') diff --git a/tutorials/08 - Language Model/main.py b/tutorials/08 - Language Model/main.py index d023fdf..7794198 100644 --- a/tutorials/08 - Language Model/main.py +++ b/tutorials/08 - Language Model/main.py @@ -61,7 +61,7 @@ optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) # Truncated Backpropagation def detach(states): - return [Variable(state.data) for state in states] + return [state.detach() for state in states] # Training for epoch in range(num_epochs): @@ -119,4 +119,4 @@ with open(sample_path, 'w') as f: print('Sampled [%d/%d] words and save to %s'%(i+1, num_samples, sample_path)) # Save the Trained Model -torch.save(model.state_dict(), 'model.pkl') \ No newline at end of file +torch.save(model.state_dict(), 'model.pkl') diff --git a/tutorials/10 - Generative Adversarial Network/main-gpu.py b/tutorials/10 - Generative Adversarial Network/main-gpu.py index 4a741bc..bdb50ab 100644 --- a/tutorials/10 - Generative Adversarial Network/main-gpu.py +++ b/tutorials/10 - Generative Adversarial Network/main-gpu.py @@ -77,7 +77,7 @@ for epoch in range(200): noise = Variable(torch.randn(images.size(0), 128)).cuda() fake_images = generator(noise) - outputs = discriminator(fake_images) + outputs = discriminator(fake_images.detach()) fake_loss = criterion(outputs, fake_labels) fake_score = outputs @@ -107,4 +107,4 @@ for epoch in range(200): # Save the Models torch.save(generator.state_dict(), './generator.pkl') -torch.save(discriminator.state_dict(), './discriminator.pkl') \ No newline at end of file +torch.save(discriminator.state_dict(), './discriminator.pkl') diff --git a/tutorials/10 - Generative Adversarial Network/main.py b/tutorials/10 - Generative Adversarial Network/main.py index 2c7cbc1..d1ceb27 100644 --- a/tutorials/10 - Generative Adversarial Network/main.py +++ b/tutorials/10 - Generative Adversarial Network/main.py @@ -77,7 +77,7 @@ for epoch in range(200): noise = Variable(torch.randn(images.size(0), 128)) fake_images = generator(noise) - outputs = discriminator(fake_images) + outputs = discriminator(fake_images.detach()) fake_loss = criterion(outputs, fake_labels) fake_score = outputs @@ -107,4 +107,4 @@ for epoch in range(200): # Save the Models torch.save(generator.state_dict(), './generator.pkl') -torch.save(discriminator.state_dict(), './discriminator.pkl') \ No newline at end of file +torch.save(discriminator.state_dict(), './discriminator.pkl') diff --git a/tutorials/11 - Deep Convolutional Generative Adversarial Network/main-gpu.py b/tutorials/11 - Deep Convolutional Generative Adversarial Network/main-gpu.py index 87d9daf..ec31ba3 100644 --- a/tutorials/11 - Deep Convolutional Generative Adversarial Network/main-gpu.py +++ b/tutorials/11 - Deep Convolutional Generative Adversarial Network/main-gpu.py @@ -102,7 +102,7 @@ for epoch in range(50): noise = Variable(torch.randn(images.size(0), 128)).cuda() fake_images = generator(noise) - outputs = discriminator(fake_images) + outputs = discriminator(fake_images.detach()) fake_loss = criterion(outputs, fake_labels) fake_score = outputs @@ -131,4 +131,4 @@ for epoch in range(50): # Save the Models torch.save(generator.state_dict(), './generator.pkl') -torch.save(discriminator.state_dict(), './discriminator.pkl') \ No newline at end of file +torch.save(discriminator.state_dict(), './discriminator.pkl') diff --git a/tutorials/11 - Deep Convolutional Generative Adversarial Network/main.py b/tutorials/11 - Deep Convolutional Generative Adversarial Network/main.py index d1552d7..101ef8f 100644 --- a/tutorials/11 - Deep Convolutional Generative Adversarial Network/main.py +++ b/tutorials/11 - Deep Convolutional Generative Adversarial Network/main.py @@ -102,7 +102,7 @@ for epoch in range(50): noise = Variable(torch.randn(images.size(0), 128)) fake_images = generator(noise) - outputs = discriminator(fake_images) + outputs = discriminator(fake_images.detch()) fake_loss = criterion(outputs, fake_labels) fake_score = outputs @@ -131,4 +131,4 @@ for epoch in range(50): # Save the Models torch.save(generator.state_dict(), './generator.pkl') -torch.save(discriminator.state_dict(), './discriminator.pkl') \ No newline at end of file +torch.save(discriminator.state_dict(), './discriminator.pkl')