mirror of
https://github.com/yunjey/pytorch-tutorial.git
synced 2025-07-05 00:24:02 +08:00
fix typo in comments
This commit is contained in:
@ -12,8 +12,8 @@ from torch.autograd import Variable
|
||||
# 1. Basic autograd example 1 (Line 21 to 36)
|
||||
# 2. Basic autograd example 2 (Line 39 to 77)
|
||||
# 3. Loading data from numpy (Line 80 to 83)
|
||||
# 4. Implementing the input pipline (Line 86 to 113)
|
||||
# 5. Input pipline for custom dataset (Line 116 to 138)
|
||||
# 4. Implementing the input pipeline (Line 86 to 113)
|
||||
# 5. Input pipeline for custom dataset (Line 116 to 138)
|
||||
# 6. Using pretrained model (Line 141 to 155)
|
||||
# 7. Save and load model (Line 158 to 165)
|
||||
|
||||
@ -83,7 +83,7 @@ b = torch.from_numpy(a) # convert numpy array to torch tensor
|
||||
c = b.numpy() # convert torch tensor to numpy array
|
||||
|
||||
|
||||
#===================== Implementing the input pipline =====================#
|
||||
#===================== Implementing the input pipeline =====================#
|
||||
# Download and construct dataset.
|
||||
train_dataset = dsets.CIFAR10(root='../data/',
|
||||
train=True,
|
||||
@ -113,7 +113,7 @@ for images, labels in train_loader:
|
||||
pass
|
||||
|
||||
|
||||
#===================== Input pipline for custom dataset =====================#
|
||||
#===================== Input pipeline for custom dataset =====================#
|
||||
# You should build custom dataset as below.
|
||||
class CustomDataset(data.Dataset):
|
||||
def __init__(self):
|
||||
|
Reference in New Issue
Block a user