diff --git a/tutorials/01-basics/pytorch_basics/main.py b/tutorials/01-basics/pytorch_basics/main.py index 153d23a..0195b01 100644 --- a/tutorials/01-basics/pytorch_basics/main.py +++ b/tutorials/01-basics/pytorch_basics/main.py @@ -12,8 +12,8 @@ from torch.autograd import Variable # 1. Basic autograd example 1 (Line 21 to 36) # 2. Basic autograd example 2 (Line 39 to 77) # 3. Loading data from numpy (Line 80 to 83) -# 4. Implementing the input pipline (Line 86 to 113) -# 5. Input pipline for custom dataset (Line 116 to 138) +# 4. Implementing the input pipeline (Line 86 to 113) +# 5. Input pipeline for custom dataset (Line 116 to 138) # 6. Using pretrained model (Line 141 to 155) # 7. Save and load model (Line 158 to 165) @@ -83,7 +83,7 @@ b = torch.from_numpy(a) # convert numpy array to torch tensor c = b.numpy() # convert torch tensor to numpy array -#===================== Implementing the input pipline =====================# +#===================== Implementing the input pipeline =====================# # Download and construct dataset. train_dataset = dsets.CIFAR10(root='../data/', train=True, @@ -113,7 +113,7 @@ for images, labels in train_loader: pass -#===================== Input pipline for custom dataset =====================# +#===================== Input pipeline for custom dataset =====================# # You should build custom dataset as below. class CustomDataset(data.Dataset): def __init__(self):