Merge pull request #107 from UdonDa/fix-url

[Fix] typo
This commit is contained in:
Yunjey Choi
2018-04-21 20:06:37 +09:00
committed by GitHub

View File

@ -1,14 +1,14 @@
# Implementation of https://arxiv.org/pdf/1512.03385.pdf/
# Implementation of https://arxiv.org/pdf/1512.03385.pdf
# See section 4.2 for model architecture on CIFAR-10.
# Some part of the code was referenced below.
# https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
import torch
import torch
import torch.nn as nn
import torchvision.datasets as dsets
import torchvision.transforms as transforms
from torch.autograd import Variable
# Image Preprocessing
# Image Preprocessing
transform = transforms.Compose([
transforms.Scale(40),
transforms.RandomHorizontalFlip(),
@ -17,26 +17,26 @@ transform = transforms.Compose([
# CIFAR-10 Dataset
train_dataset = dsets.CIFAR10(root='./data/',
train=True,
train=True,
transform=transform,
download=True)
test_dataset = dsets.CIFAR10(root='./data/',
train=False,
train=False,
transform=transforms.ToTensor())
# Data Loader (Input Pipeline)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=100,
batch_size=100,
shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=100,
batch_size=100,
shuffle=False)
# 3x3 Convolution
def conv3x3(in_channels, out_channels, stride=1):
return nn.Conv2d(in_channels, out_channels, kernel_size=3,
return nn.Conv2d(in_channels, out_channels, kernel_size=3,
stride=stride, padding=1, bias=False)
# Residual Block
@ -49,7 +49,7 @@ class ResidualBlock(nn.Module):
self.conv2 = conv3x3(out_channels, out_channels)
self.bn2 = nn.BatchNorm2d(out_channels)
self.downsample = downsample
def forward(self, x):
residual = x
out = self.conv1(x)
@ -76,7 +76,7 @@ class ResNet(nn.Module):
self.layer3 = self.make_layer(block, 64, layers[1], 2)
self.avg_pool = nn.AvgPool2d(8)
self.fc = nn.Linear(64, num_classes)
def make_layer(self, block, out_channels, blocks, stride=1):
downsample = None
if (stride != 1) or (self.in_channels != out_channels):
@ -89,7 +89,7 @@ class ResNet(nn.Module):
for i in range(1, blocks):
layers.append(block(out_channels, out_channels))
return nn.Sequential(*layers)
def forward(self, x):
out = self.conv(x)
out = self.bn(out)
@ -101,7 +101,7 @@ class ResNet(nn.Module):
out = out.view(out.size(0), -1)
out = self.fc(out)
return out
resnet = ResNet(ResidualBlock, [3, 3, 3])
resnet.cuda()
@ -109,28 +109,28 @@ resnet.cuda()
criterion = nn.CrossEntropyLoss()
lr = 0.001
optimizer = torch.optim.Adam(resnet.parameters(), lr=lr)
# Training
# Training
for epoch in range(80):
for i, (images, labels) in enumerate(train_loader):
images = Variable(images.cuda())
labels = Variable(labels.cuda())
# Forward + Backward + Optimize
optimizer.zero_grad()
outputs = resnet(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
if (i+1) % 100 == 0:
print ("Epoch [%d/%d], Iter [%d/%d] Loss: %.4f" %(epoch+1, 80, i+1, 500, loss.data[0]))
# Decaying Learning Rate
if (epoch+1) % 20 == 0:
lr /= 3
optimizer = torch.optim.Adam(resnet.parameters(), lr=lr)
optimizer = torch.optim.Adam(resnet.parameters(), lr=lr)
# Test
correct = 0
total = 0
@ -144,4 +144,4 @@ for images, labels in test_loader:
print('Accuracy of the model on the test images: %d %%' % (100 * correct / total))
# Save the Model
torch.save(resnet.state_dict(), 'resnet.pkl')
torch.save(resnet.state_dict(), 'resnet.pkl')