From b60ac3838278bbb190368ca53c96e271efe79229 Mon Sep 17 00:00:00 2001 From: UdonDa Date: Sat, 21 Apr 2018 19:56:06 +0900 Subject: [PATCH] [Fix]invalid URL --- .../deep_residual_network/main-gpu.py | 38 +++++++++---------- 1 file changed, 19 insertions(+), 19 deletions(-) diff --git a/tutorials/02-intermediate/deep_residual_network/main-gpu.py b/tutorials/02-intermediate/deep_residual_network/main-gpu.py index de1d4ff..b2fa7b4 100644 --- a/tutorials/02-intermediate/deep_residual_network/main-gpu.py +++ b/tutorials/02-intermediate/deep_residual_network/main-gpu.py @@ -1,14 +1,14 @@ -# Implementation of https://arxiv.org/pdf/1512.03385.pdf/ +# Implementation of https://arxiv.org/pdf/1512.03385.pdf # See section 4.2 for model architecture on CIFAR-10. # Some part of the code was referenced below. # https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py -import torch +import torch import torch.nn as nn import torchvision.datasets as dsets import torchvision.transforms as transforms from torch.autograd import Variable -# Image Preprocessing +# Image Preprocessing transform = transforms.Compose([ transforms.Scale(40), transforms.RandomHorizontalFlip(), @@ -17,26 +17,26 @@ transform = transforms.Compose([ # CIFAR-10 Dataset train_dataset = dsets.CIFAR10(root='./data/', - train=True, + train=True, transform=transform, download=True) test_dataset = dsets.CIFAR10(root='./data/', - train=False, + train=False, transform=transforms.ToTensor()) # Data Loader (Input Pipeline) train_loader = torch.utils.data.DataLoader(dataset=train_dataset, - batch_size=100, + batch_size=100, shuffle=True) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, - batch_size=100, + batch_size=100, shuffle=False) # 3x3 Convolution def conv3x3(in_channels, out_channels, stride=1): - return nn.Conv2d(in_channels, out_channels, kernel_size=3, + return nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False) # Residual Block @@ -49,7 +49,7 @@ class ResidualBlock(nn.Module): self.conv2 = conv3x3(out_channels, out_channels) self.bn2 = nn.BatchNorm2d(out_channels) self.downsample = downsample - + def forward(self, x): residual = x out = self.conv1(x) @@ -76,7 +76,7 @@ class ResNet(nn.Module): self.layer3 = self.make_layer(block, 64, layers[1], 2) self.avg_pool = nn.AvgPool2d(8) self.fc = nn.Linear(64, num_classes) - + def make_layer(self, block, out_channels, blocks, stride=1): downsample = None if (stride != 1) or (self.in_channels != out_channels): @@ -89,7 +89,7 @@ class ResNet(nn.Module): for i in range(1, blocks): layers.append(block(out_channels, out_channels)) return nn.Sequential(*layers) - + def forward(self, x): out = self.conv(x) out = self.bn(out) @@ -101,7 +101,7 @@ class ResNet(nn.Module): out = out.view(out.size(0), -1) out = self.fc(out) return out - + resnet = ResNet(ResidualBlock, [3, 3, 3]) resnet.cuda() @@ -109,28 +109,28 @@ resnet.cuda() criterion = nn.CrossEntropyLoss() lr = 0.001 optimizer = torch.optim.Adam(resnet.parameters(), lr=lr) - -# Training + +# Training for epoch in range(80): for i, (images, labels) in enumerate(train_loader): images = Variable(images.cuda()) labels = Variable(labels.cuda()) - + # Forward + Backward + Optimize optimizer.zero_grad() outputs = resnet(images) loss = criterion(outputs, labels) loss.backward() optimizer.step() - + if (i+1) % 100 == 0: print ("Epoch [%d/%d], Iter [%d/%d] Loss: %.4f" %(epoch+1, 80, i+1, 500, loss.data[0])) # Decaying Learning Rate if (epoch+1) % 20 == 0: lr /= 3 - optimizer = torch.optim.Adam(resnet.parameters(), lr=lr) - + optimizer = torch.optim.Adam(resnet.parameters(), lr=lr) + # Test correct = 0 total = 0 @@ -144,4 +144,4 @@ for images, labels in test_loader: print('Accuracy of the model on the test images: %d %%' % (100 * correct / total)) # Save the Model -torch.save(resnet.state_dict(), 'resnet.pkl') \ No newline at end of file +torch.save(resnet.state_dict(), 'resnet.pkl')