mirror of
https://github.com/yunjey/pytorch-tutorial.git
synced 2025-07-05 00:24:02 +08:00
modified the code
This commit is contained in:
77
tutorials/09 - Image Captioning/build_vocab.py
Normal file
77
tutorials/09 - Image Captioning/build_vocab.py
Normal file
@ -0,0 +1,77 @@
|
||||
import nltk
|
||||
import pickle
|
||||
import argparse
|
||||
from collections import Counter
|
||||
from pycocotools.coco import COCO
|
||||
|
||||
|
||||
class Vocabulary(object):
|
||||
"""Simple vocabulary wrapper."""
|
||||
def __init__(self):
|
||||
self.word2idx = {}
|
||||
self.idx2word = {}
|
||||
self.idx = 0
|
||||
|
||||
def add_word(self, word):
|
||||
if not word in self.word2idx:
|
||||
self.word2idx[word] = self.idx
|
||||
self.idx2word[self.idx] = word
|
||||
self.idx += 1
|
||||
|
||||
def __call__(self, word):
|
||||
if not word in self.word2idx:
|
||||
return self.word2idx['<unk>']
|
||||
return self.word2idx[word]
|
||||
|
||||
def __len__(self):
|
||||
return len(self.word2idx)
|
||||
|
||||
def build_vocab(json, threshold):
|
||||
"""Build a simple vocabulary wrapper."""
|
||||
coco = COCO(json)
|
||||
counter = Counter()
|
||||
ids = coco.anns.keys()
|
||||
for i, id in enumerate(ids):
|
||||
caption = str(coco.anns[id]['caption'])
|
||||
tokens = nltk.tokenize.word_tokenize(caption.lower())
|
||||
counter.update(tokens)
|
||||
|
||||
if i % 1000 == 0:
|
||||
print("[%d/%d] Tokenized the captions." %(i, len(ids)))
|
||||
|
||||
# If the word frequency is less than 'threshold', then the word is discarded.
|
||||
words = [word for word, cnt in counter.items() if cnt >= threshold]
|
||||
|
||||
# Creates a vocab wrapper and add some special tokens.
|
||||
vocab = Vocabulary()
|
||||
vocab.add_word('<pad>')
|
||||
vocab.add_word('<start>')
|
||||
vocab.add_word('<end>')
|
||||
vocab.add_word('<unk>')
|
||||
|
||||
# Adds the words to the vocabulary.
|
||||
for i, word in enumerate(words):
|
||||
vocab.add_word(word)
|
||||
return vocab
|
||||
|
||||
def main(args):
|
||||
vocab = build_vocab(json=args.caption_path,
|
||||
threshold=args.threshold)
|
||||
vocab_path = args.vocab_path
|
||||
with open(vocab_path, 'wb') as f:
|
||||
pickle.dump(vocab, f, pickle.HIGHEST_PROTOCOL)
|
||||
print("Total vocabulary size: %d" %len(vocab))
|
||||
print("Saved the vocabulary wrapper to '%s'" %vocab_path)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--caption_path', type=str,
|
||||
default='./data/annotations/captions_train2014.json',
|
||||
help='path for train annotation file')
|
||||
parser.add_argument('--vocab_path', type=str, default='./data/vocab.pkl',
|
||||
help='path for saving vocabulary wrapper')
|
||||
parser.add_argument('--threshold', type=int, default=4,
|
||||
help='minimum word count threshold')
|
||||
args = parser.parse_args()
|
||||
main(args)
|
44
tutorials/09 - Image Captioning/resize.py
Normal file
44
tutorials/09 - Image Captioning/resize.py
Normal file
@ -0,0 +1,44 @@
|
||||
import argparse
|
||||
import os
|
||||
from PIL import Image
|
||||
|
||||
|
||||
def resize_image(image, size):
|
||||
"""Resize an image to the given size."""
|
||||
return image.resize(size, Image.ANTIALIAS)
|
||||
|
||||
def resize_images(image_dir, output_dir, size):
|
||||
"""Resize the images in 'image_dir' and save into 'output_dir'."""
|
||||
if not os.path.exists(output_dir):
|
||||
os.makedirs(output_dir)
|
||||
|
||||
images = os.listdir(image_dir)
|
||||
num_images = len(images)
|
||||
for i, image in enumerate(images):
|
||||
with open(os.path.join(image_dir, image), 'r+b') as f:
|
||||
with Image.open(f) as img:
|
||||
img = resize_image(img, size)
|
||||
img.save(os.path.join(output_dir, image), img.format)
|
||||
if i % 100 == 0:
|
||||
print ("[%d/%d] Resized the images and saved into '%s'."
|
||||
%(i, num_images, output_dir))
|
||||
|
||||
def main(args):
|
||||
splits = ['train', 'val']
|
||||
for split in splits:
|
||||
image_dir = args.image_dir
|
||||
output_dir = args.output_dir
|
||||
image_size = [args.image_size, args.image_size]
|
||||
resize_images(image_dir, output_dir, image_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--image_dir', type=str, default='./data/train2014/',
|
||||
help='directory for train images')
|
||||
parser.add_argument('--output_dir', type=str, default='./data/resized2014/',
|
||||
help='directory for saving resized images')
|
||||
parser.add_argument('--image_size', type=int, default=256,
|
||||
help='size for image after processing')
|
||||
args = parser.parse_args()
|
||||
main(args)
|
Reference in New Issue
Block a user