modified the code

This commit is contained in:
yunjey
2017-04-13 19:51:14 +09:00
parent 0e59313b4b
commit 4769688469
2 changed files with 121 additions and 0 deletions

View File

@ -0,0 +1,77 @@
import nltk
import pickle
import argparse
from collections import Counter
from pycocotools.coco import COCO
class Vocabulary(object):
"""Simple vocabulary wrapper."""
def __init__(self):
self.word2idx = {}
self.idx2word = {}
self.idx = 0
def add_word(self, word):
if not word in self.word2idx:
self.word2idx[word] = self.idx
self.idx2word[self.idx] = word
self.idx += 1
def __call__(self, word):
if not word in self.word2idx:
return self.word2idx['<unk>']
return self.word2idx[word]
def __len__(self):
return len(self.word2idx)
def build_vocab(json, threshold):
"""Build a simple vocabulary wrapper."""
coco = COCO(json)
counter = Counter()
ids = coco.anns.keys()
for i, id in enumerate(ids):
caption = str(coco.anns[id]['caption'])
tokens = nltk.tokenize.word_tokenize(caption.lower())
counter.update(tokens)
if i % 1000 == 0:
print("[%d/%d] Tokenized the captions." %(i, len(ids)))
# If the word frequency is less than 'threshold', then the word is discarded.
words = [word for word, cnt in counter.items() if cnt >= threshold]
# Creates a vocab wrapper and add some special tokens.
vocab = Vocabulary()
vocab.add_word('<pad>')
vocab.add_word('<start>')
vocab.add_word('<end>')
vocab.add_word('<unk>')
# Adds the words to the vocabulary.
for i, word in enumerate(words):
vocab.add_word(word)
return vocab
def main(args):
vocab = build_vocab(json=args.caption_path,
threshold=args.threshold)
vocab_path = args.vocab_path
with open(vocab_path, 'wb') as f:
pickle.dump(vocab, f, pickle.HIGHEST_PROTOCOL)
print("Total vocabulary size: %d" %len(vocab))
print("Saved the vocabulary wrapper to '%s'" %vocab_path)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--caption_path', type=str,
default='./data/annotations/captions_train2014.json',
help='path for train annotation file')
parser.add_argument('--vocab_path', type=str, default='./data/vocab.pkl',
help='path for saving vocabulary wrapper')
parser.add_argument('--threshold', type=int, default=4,
help='minimum word count threshold')
args = parser.parse_args()
main(args)

View File

@ -0,0 +1,44 @@
import argparse
import os
from PIL import Image
def resize_image(image, size):
"""Resize an image to the given size."""
return image.resize(size, Image.ANTIALIAS)
def resize_images(image_dir, output_dir, size):
"""Resize the images in 'image_dir' and save into 'output_dir'."""
if not os.path.exists(output_dir):
os.makedirs(output_dir)
images = os.listdir(image_dir)
num_images = len(images)
for i, image in enumerate(images):
with open(os.path.join(image_dir, image), 'r+b') as f:
with Image.open(f) as img:
img = resize_image(img, size)
img.save(os.path.join(output_dir, image), img.format)
if i % 100 == 0:
print ("[%d/%d] Resized the images and saved into '%s'."
%(i, num_images, output_dir))
def main(args):
splits = ['train', 'val']
for split in splits:
image_dir = args.image_dir
output_dir = args.output_dir
image_size = [args.image_size, args.image_size]
resize_images(image_dir, output_dir, image_size)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--image_dir', type=str, default='./data/train2014/',
help='directory for train images')
parser.add_argument('--output_dir', type=str, default='./data/resized2014/',
help='directory for saving resized images')
parser.add_argument('--image_size', type=int, default=256,
help='size for image after processing')
args = parser.parse_args()
main(args)