From 47696884697adbebaf1b35dc72e234d5e88c0335 Mon Sep 17 00:00:00 2001 From: yunjey Date: Thu, 13 Apr 2017 19:51:14 +0900 Subject: [PATCH] modified the code --- .../09 - Image Captioning/build_vocab.py | 77 +++++++++++++++++++ tutorials/09 - Image Captioning/resize.py | 44 +++++++++++ 2 files changed, 121 insertions(+) create mode 100644 tutorials/09 - Image Captioning/build_vocab.py create mode 100644 tutorials/09 - Image Captioning/resize.py diff --git a/tutorials/09 - Image Captioning/build_vocab.py b/tutorials/09 - Image Captioning/build_vocab.py new file mode 100644 index 0000000..612920a --- /dev/null +++ b/tutorials/09 - Image Captioning/build_vocab.py @@ -0,0 +1,77 @@ +import nltk +import pickle +import argparse +from collections import Counter +from pycocotools.coco import COCO + + +class Vocabulary(object): + """Simple vocabulary wrapper.""" + def __init__(self): + self.word2idx = {} + self.idx2word = {} + self.idx = 0 + + def add_word(self, word): + if not word in self.word2idx: + self.word2idx[word] = self.idx + self.idx2word[self.idx] = word + self.idx += 1 + + def __call__(self, word): + if not word in self.word2idx: + return self.word2idx[''] + return self.word2idx[word] + + def __len__(self): + return len(self.word2idx) + +def build_vocab(json, threshold): + """Build a simple vocabulary wrapper.""" + coco = COCO(json) + counter = Counter() + ids = coco.anns.keys() + for i, id in enumerate(ids): + caption = str(coco.anns[id]['caption']) + tokens = nltk.tokenize.word_tokenize(caption.lower()) + counter.update(tokens) + + if i % 1000 == 0: + print("[%d/%d] Tokenized the captions." %(i, len(ids))) + + # If the word frequency is less than 'threshold', then the word is discarded. + words = [word for word, cnt in counter.items() if cnt >= threshold] + + # Creates a vocab wrapper and add some special tokens. + vocab = Vocabulary() + vocab.add_word('') + vocab.add_word('') + vocab.add_word('') + vocab.add_word('') + + # Adds the words to the vocabulary. + for i, word in enumerate(words): + vocab.add_word(word) + return vocab + +def main(args): + vocab = build_vocab(json=args.caption_path, + threshold=args.threshold) + vocab_path = args.vocab_path + with open(vocab_path, 'wb') as f: + pickle.dump(vocab, f, pickle.HIGHEST_PROTOCOL) + print("Total vocabulary size: %d" %len(vocab)) + print("Saved the vocabulary wrapper to '%s'" %vocab_path) + + +if __name__ == '__main__': + parser = argparse.ArgumentParser() + parser.add_argument('--caption_path', type=str, + default='./data/annotations/captions_train2014.json', + help='path for train annotation file') + parser.add_argument('--vocab_path', type=str, default='./data/vocab.pkl', + help='path for saving vocabulary wrapper') + parser.add_argument('--threshold', type=int, default=4, + help='minimum word count threshold') + args = parser.parse_args() + main(args) \ No newline at end of file diff --git a/tutorials/09 - Image Captioning/resize.py b/tutorials/09 - Image Captioning/resize.py new file mode 100644 index 0000000..783a824 --- /dev/null +++ b/tutorials/09 - Image Captioning/resize.py @@ -0,0 +1,44 @@ +import argparse +import os +from PIL import Image + + +def resize_image(image, size): + """Resize an image to the given size.""" + return image.resize(size, Image.ANTIALIAS) + +def resize_images(image_dir, output_dir, size): + """Resize the images in 'image_dir' and save into 'output_dir'.""" + if not os.path.exists(output_dir): + os.makedirs(output_dir) + + images = os.listdir(image_dir) + num_images = len(images) + for i, image in enumerate(images): + with open(os.path.join(image_dir, image), 'r+b') as f: + with Image.open(f) as img: + img = resize_image(img, size) + img.save(os.path.join(output_dir, image), img.format) + if i % 100 == 0: + print ("[%d/%d] Resized the images and saved into '%s'." + %(i, num_images, output_dir)) + +def main(args): + splits = ['train', 'val'] + for split in splits: + image_dir = args.image_dir + output_dir = args.output_dir + image_size = [args.image_size, args.image_size] + resize_images(image_dir, output_dir, image_size) + + +if __name__ == '__main__': + parser = argparse.ArgumentParser() + parser.add_argument('--image_dir', type=str, default='./data/train2014/', + help='directory for train images') + parser.add_argument('--output_dir', type=str, default='./data/resized2014/', + help='directory for saving resized images') + parser.add_argument('--image_size', type=int, default=256, + help='size for image after processing') + args = parser.parse_args() + main(args) \ No newline at end of file