Files
leetcode-master/problems/0216.组合总和III.md
programmercarl 631b333c08 Update
2023-09-19 16:21:37 +08:00

644 lines
18 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<p align="center">
<a href="https://programmercarl.com/other/xunlianying.html" target="_blank">
<img src="../pics/训练营.png" width="1000"/>
</a>
<p align="center"><strong><a href="https://mp.weixin.qq.com/s/tqCxrMEU-ajQumL1i8im9A">参与本项目</a>,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!</strong></p>
> 别看本篇选的是组合总和III而不是组合总和本题和上一篇77.组合相比难度刚刚好!
# 216.组合总和III
[力扣题目链接](https://leetcode.cn/problems/combination-sum-iii/)
找出所有相加之和为 n 的 k 个数的组合。组合中只允许含有 1 - 9 的正整数,并且每种组合中不存在重复的数字。
说明:
* 所有数字都是正整数。
* 解集不能包含重复的组合。
示例 1:
输入: k = 3, n = 7
输出: [[1,2,4]]
示例 2:
输入: k = 3, n = 9
输出: [[1,2,6], [1,3,5], [2,3,4]]
## 算法公开课
**[《代码随想录》算法视频公开课](https://programmercarl.com/other/gongkaike.html)[和组合问题有啥区别?回溯算法如何剪枝?| LeetCode216.组合总和III](https://www.bilibili.com/video/BV1wg411873x),相信结合视频再看本篇题解,更有助于大家对本题的理解**。
## 思路
本题就是在[1,2,3,4,5,6,7,8,9]这个集合中找到和为n的k个数的组合。
相对于[77. 组合](https://programmercarl.com/0077.组合.html)无非就是多了一个限制本题是要找到和为n的k个数的组合而整个集合已经是固定的了[1,...,9]。
想到这一点了,做过[77. 组合](https://programmercarl.com/0077.组合.html)之后,本题是简单一些了。
本题k相当于树的深度9因为整个集合就是9个数就是树的宽度。
例如 k = 2n = 4的话就是在集合[1,2,3,4,5,6,7,8,9]中求 k个数 = 2, n = 4的组合。
选取过程如图:
![216.组合总和III](https://code-thinking-1253855093.file.myqcloud.com/pics/20201123195717975.png)
图中可以看出只有最后取到集合13和为4 符合条件。
### 回溯三部曲
* **确定递归函数参数**
和[77. 组合](https://programmercarl.com/0077.组合.html)一样依然需要一维数组path来存放符合条件的结果二维数组result来存放结果集。
这里我依然定义path 和 result为全局变量。
至于为什么取名为path从上面树形结构中可以看出结果其实就是一条根节点到叶子节点的路径。
```cpp
vector<vector<int>> result; // 存放结果集
vector<int> path; // 符合条件的结果
```
接下来还需要如下参数:
* targetSumint目标和也就是题目中的n。
* kint就是题目中要求k个数的集合。
* sumint为已经收集的元素的总和也就是path里元素的总和。
* startIndexint为下一层for循环搜索的起始位置。
所以代码如下:
```cpp
vector<vector<int>> result;
vector<int> path;
void backtracking(int targetSum, int k, int sum, int startIndex)
```
其实这里sum这个参数也可以省略每次targetSum减去选取的元素数值然后判断如果targetSum为0了说明收集到符合条件的结果了我这里为了直观便于理解还是加一个sum参数。
还要强调一下,回溯法中递归函数参数很难一次性确定下来,一般先写逻辑,需要啥参数了,填什么参数。
* 确定终止条件
什么时候终止呢?
在上面已经说了k其实就已经限制树的深度因为就取k个元素树再往下深了没有意义。
所以如果path.size() 和 k相等了就终止。
如果此时path里收集到的元素和sum 和targetSum就是题目描述的n相同了就用result收集当前的结果。
所以 终止代码如下:
```CPP
if (path.size() == k) {
if (sum == targetSum) result.push_back(path);
return; // 如果path.size() == k 但sum != targetSum 直接返回
}
```
* **单层搜索过程**
本题和[77. 组合](https://programmercarl.com/0077.组合.html)区别之一就是集合固定的就是9个数[1,...,9]所以for循环固定i<=9
如图:
![216.组合总和III](https://code-thinking-1253855093.file.myqcloud.com/pics/20201123195717975-20230310113546003.png)
处理过程就是 path收集每次选取的元素相当于树型结构里的边sum来统计path里元素的总和。
代码如下:
```CPP
for (int i = startIndex; i <= 9; i++) {
sum += i;
path.push_back(i);
backtracking(targetSum, k, sum, i + 1); // 注意i+1调整startIndex
sum -= i; // 回溯
path.pop_back(); // 回溯
}
```
**别忘了处理过程 和 回溯过程是一一对应的,处理有加,回溯就要有减!**
参照[关于回溯算法,你该了解这些!](https://programmercarl.com/回溯算法理论基础.html)中的模板不难写出如下C++代码:
```CPP
class Solution {
private:
vector<vector<int>> result; // 存放结果集
vector<int> path; // 符合条件的结果
// targetSum目标和也就是题目中的n。
// k题目中要求k个数的集合。
// sum已经收集的元素的总和也就是path里元素的总和。
// startIndex下一层for循环搜索的起始位置。
void backtracking(int targetSum, int k, int sum, int startIndex) {
if (path.size() == k) {
if (sum == targetSum) result.push_back(path);
return; // 如果path.size() == k 但sum != targetSum 直接返回
}
for (int i = startIndex; i <= 9; i++) {
sum += i; // 处理
path.push_back(i); // 处理
backtracking(targetSum, k, sum, i + 1); // 注意i+1调整startIndex
sum -= i; // 回溯
path.pop_back(); // 回溯
}
}
public:
vector<vector<int>> combinationSum3(int k, int n) {
result.clear(); // 可以不加
path.clear(); // 可以不加
backtracking(n, k, 0, 1);
return result;
}
};
```
### 剪枝
这道题目,剪枝操作其实是很容易想到了,想必大家看上面的树形图的时候已经想到了。
如图:
![216.组合总和III1](https://code-thinking-1253855093.file.myqcloud.com/pics/2020112319580476.png)
已选元素总和如果已经大于n图中数值为4那么往后遍历就没有意义了直接剪掉。
那么剪枝的地方可以放在递归函数开始的地方,剪枝代码如下:
```cpp
if (sum > targetSum) { // 剪枝操作
return;
}
```
当然这个剪枝也可以放在 调用递归之前,即放在这里,只不过要记得 要回溯操作给做了。
```CPP
for (int i = startIndex; i <= 9 - (k - path.size()) + 1; i++) { // 剪枝
sum += i; // 处理
path.push_back(i); // 处理
if (sum > targetSum) { // 剪枝操作
sum -= i; // 剪枝之前先把回溯做了
path.pop_back(); // 剪枝之前先把回溯做了
return;
}
backtracking(targetSum, k, sum, i + 1); // 注意i+1调整startIndex
sum -= i; // 回溯
path.pop_back(); // 回溯
}
```
和[回溯算法:组合问题再剪剪枝](https://programmercarl.com/0077.组合优化.html) 一样for循环的范围也可以剪枝i <= 9 - (k - path.size()) + 1就可以了。
最后C++代码如下:
```CPP
class Solution {
private:
vector<vector<int>> result; // 存放结果集
vector<int> path; // 符合条件的结果
void backtracking(int targetSum, int k, int sum, int startIndex) {
if (sum > targetSum) { // 剪枝操作
return;
}
if (path.size() == k) {
if (sum == targetSum) result.push_back(path);
return; // 如果path.size() == k 但sum != targetSum 直接返回
}
for (int i = startIndex; i <= 9 - (k - path.size()) + 1; i++) { // 剪枝
sum += i; // 处理
path.push_back(i); // 处理
backtracking(targetSum, k, sum, i + 1); // 注意i+1调整startIndex
sum -= i; // 回溯
path.pop_back(); // 回溯
}
}
public:
vector<vector<int>> combinationSum3(int k, int n) {
result.clear(); // 可以不加
path.clear(); // 可以不加
backtracking(n, k, 0, 1);
return result;
}
};
```
* 时间复杂度: O(n * 2^n)
* 空间复杂度: O(n)
## 总结
开篇就介绍了本题与[77.组合](https://programmercarl.com/0077.组合.html)的区别,相对来说加了元素总和的限制,如果做完[77.组合](https://programmercarl.com/0077.组合.html)再做本题在合适不过。
分析完区别,依然把问题抽象为树形结构,按照回溯三部曲进行讲解,最后给出剪枝的优化。
相信做完本题,大家对组合问题应该有初步了解了。
## 其他语言版本
### Java
模板方法
```java
class Solution {
List<List<Integer>> result = new ArrayList<>();
LinkedList<Integer> path = new LinkedList<>();
public List<List<Integer>> combinationSum3(int k, int n) {
backTracking(n, k, 1, 0);
return result;
}
private void backTracking(int targetSum, int k, int startIndex, int sum) {
// 减枝
if (sum > targetSum) {
return;
}
if (path.size() == k) {
if (sum == targetSum) result.add(new ArrayList<>(path));
return;
}
// 减枝 9 - (k - path.size()) + 1
for (int i = startIndex; i <= 9 - (k - path.size()) + 1; i++) {
path.add(i);
sum += i;
backTracking(targetSum, k, i + 1, sum);
//回溯
path.removeLast();
//回溯
sum -= i;
}
}
}
// 上面剪枝 i <= 9 - (k - path.size()) + 1; 如果还是不清楚
// 也可以改为 if (path.size() > k) return; 执行效率上是一样的
class Solution {
LinkedList<Integer> path = new LinkedList<>();
List<List<Integer>> ans = new ArrayList<>();
public List<List<Integer>> combinationSum3(int k, int n) {
build(k, n, 1, 0);
return ans;
}
private void build(int k, int n, int startIndex, int sum) {
if (sum > n) return;
if (path.size() > k) return;
if (sum == n && path.size() == k) {
ans.add(new ArrayList<>(path));
return;
}
for(int i = startIndex; i <= 9; i++) {
path.add(i);
sum += i;
build(k, n, i + 1, sum);
sum -= i;
path.removeLast();
}
}
}
```
其他方法
```java
class Solution {
List<List<Integer>> res = new ArrayList<>();
List<Integer> list = new ArrayList<>();
public List<List<Integer>> combinationSum3(int k, int n) {
res.clear();
list.clear();
backtracking(k, n, 9);
return res;
}
private void backtracking(int k, int n, int maxNum) {
if (k == 0 && n == 0) {
res.add(new ArrayList<>(list));
return;
}
// 因为不能重复并且单个数字最大值是maxNum所以sum最大值为
// maxNum + (maxNum - 1) + ... + (maxNum - k + 1) == k * maxNum - k*(k - 1) / 2
if (maxNum == 0
|| n > k * maxNum - k * (k - 1) / 2
|| n < (1 + k) * k / 2) {
return;
}
list.add(maxNum);
backtracking(k - 1, n - maxNum, maxNum - 1);
list.remove(list.size() - 1);
backtracking(k, n, maxNum - 1);
}
}
```
### Python
```py
class Solution:
def combinationSum3(self, k: int, n: int) -> List[List[int]]:
result = [] # 存放结果集
self.backtracking(n, k, 0, 1, [], result)
return result
def backtracking(self, targetSum, k, currentSum, startIndex, path, result):
if currentSum > targetSum: # 剪枝操作
return # 如果path的长度等于k但currentSum不等于targetSum则直接返回
if len(path) == k:
if currentSum == targetSum:
result.append(path[:])
return
for i in range(startIndex, 9 - (k - len(path)) + 2): # 剪枝
currentSum += i # 处理
path.append(i) # 处理
self.backtracking(targetSum, k, currentSum, i + 1, path, result) # 注意i+1调整startIndex
currentSum -= i # 回溯
path.pop() # 回溯
```
### Go
回溯+减枝
```go
var (
res [][]int
path []int
)
func combinationSum3(k int, n int) [][]int {
res, path = make([][]int, 0), make([]int, 0, k)
dfs(k, n, 1, 0)
return res
}
func dfs(k, n int, start int, sum int) {
if len(path) == k {
if sum == n {
tmp := make([]int, k)
copy(tmp, path)
res = append(res, tmp)
}
return
}
for i := start; i <= 9; i++ {
if sum + i > n || 9-i+1 < k-len(path) {
break
}
path = append(path, i)
dfs(k, n, i+1, sum+i)
path = path[:len(path)-1]
}
}
```
### JavaScript
```js
/**
* @param {number} k
* @param {number} n
* @return {number[][]}
*/
var combinationSum3 = function(k, n) {
let res = [];
let path = [];
let sum = 0;
const dfs = (path,index) => {
// 剪枝操作
if (sum > n){
return
}
if (path.length == k) {
if(sum == n){
res.push([...path]);
return
}
}
for (let i = index; i <= 9 - (k-path.length) + 1;i++) {
path.push(i);
sum = sum + i;
index += 1;
dfs(path,index);
sum -= i
path.pop()
}
}
dfs(path,1);
return res
};
```
### TypeScript
```typescript
function combinationSum3(k: number, n: number): number[][] {
const resArr: number[][] = [];
function backTracking(k: number, n: number, sum: number, startIndex: number, tempArr: number[]): void {
if (sum > n) return;
if (tempArr.length === k) {
if (sum === n) {
resArr.push(tempArr.slice());
}
return;
}
for (let i = startIndex; i <= 9 - (k - tempArr.length) + 1; i++) {
tempArr.push(i);
backTracking(k, n, sum + i, i + 1, tempArr);
tempArr.pop();
}
}
backTracking(k, n, 0, 1, []);
return resArr;
};
```
### Rust
```Rust
impl Solution {
pub fn combination_sum3(k: i32, n: i32) -> Vec<Vec<i32>> {
let mut result = vec![];
let mut path = vec![];
Self::backtrace(&mut result, &mut path, n, k, 0, 1);
result
}
pub fn backtrace(
result: &mut Vec<Vec<i32>>,
path: &mut Vec<i32>,
target_sum: i32,
k: i32,
sum: i32,
start_index: i32,
) {
if sum > target_sum {
return;
}
let len = path.len() as i32;
if len == k {
if sum == target_sum {
result.push(path.to_vec());
}
return;
}
for i in start_index..=9 - (k - len) + 1 {
path.push(i);
Self::backtrace(result, path, target_sum, k, sum + i, i + 1);
path.pop();
}
}
}
```
### C
```c
int* path;
int pathTop;
int** ans;
int ansTop;
int getPathSum() {
int i;
int sum = 0;
for(i = 0; i < pathTop; i++) {
sum += path[i];
}
return sum;
}
void backtracking(int targetSum, int k, int sum, int startIndex) {
if(pathTop == k) {
if(sum == targetSum) {
int* tempPath = (int*)malloc(sizeof(int) * k);
int j;
for(j = 0; j < k; j++)
tempPath[j] = path[j];
ans[ansTop++] = tempPath;
}
// 如果path.size() == k 但sum != targetSum 直接返回
return;
}
int i;
//从startIndex开始遍历一直遍历到9
for (i = startIndex; i <= 9; i++) {
sum += i; // 处理
path[pathTop++] = i; // 处理
backtracking(targetSum, k, sum, i + 1); // 注意i+1调整startIndex
sum -= i; // 回溯
pathTop--;; // 回溯
}
}
int** combinationSum3(int k, int n, int* returnSize, int** returnColumnSizes){
//初始化辅助变量
path = (int*)malloc(sizeof(int) * k);
ans = (int**)malloc(sizeof(int*) * 20);
pathTop = ansTop = 0;
backtracking(n, k, 0, 1);
//设置返回的二维数组中元素个数为ansTop
*returnSize = ansTop;
//设置二维数组中每个元素个数的大小为k
*returnColumnSizes = (int*)malloc(sizeof(int) * ansTop);
int i;
for(i = 0; i < ansTop; i++) {
(*returnColumnSizes)[i] = k;
}
return ans;
}
```
### Swift
```swift
func combinationSum3(_ count: Int, _ targetSum: Int) -> [[Int]] {
var result = [[Int]]()
var path = [Int]()
func backtracking(sum: Int, start: Int) {
// 剪枝
if sum > targetSum { return }
// 终止条件
if path.count == count {
if sum == targetSum {
result.append(path)
}
return
}
// 单层逻辑
let end = 9
guard start <= end else { return }
for i in start ... end {
path.append(i) // 处理
backtracking(sum: sum + i, start: i + 1)
path.removeLast() // 回溯
}
}
backtracking(sum: 0, start: 1)
return result
}
```
### Scala
```scala
object Solution {
import scala.collection.mutable
def combinationSum3(k: Int, n: Int): List[List[Int]] = {
var result = mutable.ListBuffer[List[Int]]()
var path = mutable.ListBuffer[Int]()
def backtracking(k: Int, n: Int, sum: Int, startIndex: Int): Unit = {
if (sum > n) return // 剪枝如果sum>目标和,就返回
if (sum == n && path.size == k) {
result.append(path.toList)
return
}
// 剪枝
for (i <- startIndex to (9 - (k - path.size) + 1)) {
path.append(i)
backtracking(k, n, sum + i, i + 1)
path = path.take(path.size - 1)
}
}
backtracking(k, n, 0, 1) // 调用递归方法
result.toList // 最终返回结果集的List形式
}
}
```
<p align="center">
<a href="https://programmercarl.com/other/kstar.html" target="_blank">
<img src="../pics/网站星球宣传海报.jpg" width="1000"/>
</a>