mirror of
https://github.com/youngyangyang04/leetcode-master.git
synced 2025-08-02 20:28:28 +08:00
401 lines
12 KiB
Markdown
401 lines
12 KiB
Markdown
|
||
# kruskal算法精讲
|
||
|
||
[卡码网:53. 寻宝](https://kamacoder.com/problempage.php?pid=1053)
|
||
|
||
题目描述:
|
||
|
||
在世界的某个区域,有一些分散的神秘岛屿,每个岛屿上都有一种珍稀的资源或者宝藏。国王打算在这些岛屿上建公路,方便运输。
|
||
|
||
不同岛屿之间,路途距离不同,国王希望你可以规划建公路的方案,如何可以以最短的总公路距离将 所有岛屿联通起来。
|
||
|
||
给定一张地图,其中包括了所有的岛屿,以及它们之间的距离。以最小化公路建设长度,确保可以链接到所有岛屿。
|
||
|
||
输入描述:
|
||
|
||
第一行包含两个整数V 和 E,V代表顶点数,E代表边数 。顶点编号是从1到V。例如:V=2,一个有两个顶点,分别是1和2。
|
||
|
||
接下来共有 E 行,每行三个整数 v1,v2 和 val,v1 和 v2 为边的起点和终点,val代表边的权值。
|
||
|
||
输出描述:
|
||
|
||
输出联通所有岛屿的最小路径总距离
|
||
|
||
输入示例:
|
||
|
||
```
|
||
7 11
|
||
1 2 1
|
||
1 3 1
|
||
1 5 2
|
||
2 6 1
|
||
2 4 2
|
||
2 3 2
|
||
3 4 1
|
||
4 5 1
|
||
5 6 2
|
||
5 7 1
|
||
6 7 1
|
||
```
|
||
|
||
输出示例:
|
||
|
||
6
|
||
|
||
## 解题思路
|
||
|
||
在上一篇 我们讲解了 prim算法求解 最小生成树,本篇我们来讲解另一个算法:Kruskal,同样可以求最小生成树。
|
||
|
||
**prim 算法是维护节点的集合,而 Kruskal 是维护边的集合**。
|
||
|
||
上来就这么说,大家应该看不太懂,这里是先让大家有这么个印象,带着这个印象在看下文,理解的会更到位一些。
|
||
|
||
kruscal的思路:
|
||
|
||
* 边的权值排序,因为要优先选最小的边加入到生成树里
|
||
* 遍历排序后的边
|
||
* 如果边首尾的两个节点在同一个集合,说明如果连上这条边图中会出现环
|
||
* 如果边首尾的两个节点不在同一个集合,加入到最小生成树,并把两个节点加入同一个集合
|
||
|
||
下面我们画图举例说明kruscal的工作过程。
|
||
|
||
依然以示例中,如下这个图来举例。
|
||
|
||

|
||
|
||
将图中的边按照权值有小到大排序,这样从贪心的角度来说,优先选 权值小的边加入到 最小生成树中。
|
||
|
||
排序后的边顺序为[(1,2) (4,5) (1,3) (2,6) (3,4) (6,7) (5,7) (1,5) (3,2) (2,4) (5,6)]
|
||
|
||
> (1,2) 表示节点1 与 节点2 之间的边。权值相同的边,先后顺序无所谓。
|
||
|
||
**开始从头遍历排序后的边**。
|
||
|
||
--------
|
||
|
||
选边(1,2),节点1 和 节点2 不在同一个集合,所以生成树可以添加边(1,2),并将 节点1,节点2 放在同一个集合。
|
||
|
||

|
||
|
||
--------
|
||
|
||
选边(4,5),节点4 和 节点 5 不在同一个集合,生成树可以添加边(4,5) ,并将节点4,节点5 放到同一个集合。
|
||
|
||

|
||
|
||
**大家判断两个节点是否在同一个集合,就看图中两个节点是否有绿色的粗线连着就行**
|
||
|
||
------
|
||
|
||
(这里在强调一下,以下选边是按照上面排序好的边的数组来选择的)
|
||
|
||
选边(1,3),节点1 和 节点3 不在同一个集合,生成树添加边(1,3),并将节点1,节点3 放到同一个集合。
|
||
|
||

|
||
|
||
---------
|
||
|
||
选边(2,6),节点2 和 节点6 不在同一个集合,生成树添加边(2,6),并将节点2,节点6 放到同一个集合。
|
||
|
||

|
||
|
||
--------
|
||
|
||
选边(3,4),节点3 和 节点4 不在同一个集合,生成树添加边(3,4),并将节点3,节点4 放到同一个集合。
|
||
|
||

|
||
|
||
----------
|
||
|
||
选边(6,7),节点6 和 节点7 不在同一个集合,生成树添加边(6,7),并将 节点6,节点7 放到同一个集合。
|
||
|
||

|
||
|
||
-----------
|
||
|
||
选边(5,7),节点5 和 节点7 在同一个集合,不做计算。
|
||
|
||
选边(1,5),两个节点在同一个集合,不做计算。
|
||
|
||
后面遍历 边(3,2),(2,4),(5,6) 同理,都因两个节点已经在同一集合,不做计算。
|
||
|
||
|
||
-------
|
||
|
||
此时 我们就已经生成了一个最小生成树,即:
|
||
|
||

|
||
|
||
在上面的讲解中,看图的话 大家知道如何判断 两个节点 是否在同一个集合(是否有绿色的线连在一起),以及如何把两个节点加入集合(就在图中把两个节点连上)
|
||
|
||
**但在代码中,如果将两个节点加入同一个集合,又如何判断两个节点是否在同一个集合呢**?
|
||
|
||
这里就涉及到我们之前讲解的[并查集](https://www.programmercarl.com/%E5%9B%BE%E8%AE%BA%E5%B9%B6%E6%9F%A5%E9%9B%86%E7%90%86%E8%AE%BA%E5%9F%BA%E7%A1%80.html)。
|
||
|
||
我们在并查集开篇的时候就讲了,并查集主要就两个功能:
|
||
|
||
* 将两个元素添加到一个集合中
|
||
* 判断两个元素在不在同一个集合
|
||
|
||
大家发现这正好符合 Kruskal算法的需求,这也是为什么 **我要先讲并查集,再讲 Kruskal**。
|
||
|
||
关于 并查集,我已经在[并查集精讲](https://www.programmercarl.com/%E5%9B%BE%E8%AE%BA%E5%B9%B6%E6%9F%A5%E9%9B%86%E7%90%86%E8%AE%BA%E5%9F%BA%E7%A1%80.html) 详细讲解过了,所以这里不再赘述,我们直接用。
|
||
|
||
本题代码如下,已经详细注释:
|
||
|
||
```CPP
|
||
|
||
#include <iostream>
|
||
#include <vector>
|
||
#include <algorithm>
|
||
|
||
using namespace std;
|
||
|
||
// l,r为 边两边的节点,val为边的数值
|
||
struct Edge {
|
||
int l, r, val;
|
||
};
|
||
|
||
// 节点数量
|
||
int n = 10001;
|
||
// 并查集标记节点关系的数组
|
||
vector<int> father(n, -1); // 节点编号是从1开始的,n要大一些
|
||
|
||
// 并查集初始化
|
||
void init() {
|
||
for (int i = 0; i < n; ++i) {
|
||
father[i] = i;
|
||
}
|
||
}
|
||
|
||
// 并查集的查找操作
|
||
int find(int u) {
|
||
return u == father[u] ? u : father[u] = find(father[u]); // 路径压缩
|
||
}
|
||
|
||
// 并查集的加入集合
|
||
void join(int u, int v) {
|
||
u = find(u); // 寻找u的根
|
||
v = find(v); // 寻找v的根
|
||
if (u == v) return ; // 如果发现根相同,则说明在一个集合,不用两个节点相连直接返回
|
||
father[v] = u;
|
||
}
|
||
|
||
int main() {
|
||
|
||
int v, e;
|
||
int v1, v2, val;
|
||
vector<Edge> edges;
|
||
int result_val = 0;
|
||
cin >> v >> e;
|
||
while (e--) {
|
||
cin >> v1 >> v2 >> val;
|
||
edges.push_back({v1, v2, val});
|
||
}
|
||
|
||
// 执行Kruskal算法
|
||
// 按边的权值对边进行从小到大排序
|
||
sort(edges.begin(), edges.end(), [](const Edge& a, const Edge& b) {
|
||
return a.val < b.val;
|
||
});
|
||
|
||
// 并查集初始化
|
||
init();
|
||
|
||
// 从头开始遍历边
|
||
for (Edge edge : edges) {
|
||
// 并查集,搜出两个节点的祖先
|
||
int x = find(edge.l);
|
||
int y = find(edge.r);
|
||
|
||
// 如果祖先不同,则不在同一个集合
|
||
if (x != y) {
|
||
result_val += edge.val; // 这条边可以作为生成树的边
|
||
join(x, y); // 两个节点加入到同一个集合
|
||
}
|
||
}
|
||
cout << result_val << endl;
|
||
return 0;
|
||
}
|
||
|
||
```
|
||
|
||
时间复杂度:nlogn (快排) + logn (并查集) ,所以最后依然是 nlogn 。n为边的数量。
|
||
|
||
关于并查集时间复杂度,可以看我在 [并查集理论基础](https://programmercarl.com/%E5%9B%BE%E8%AE%BA%E5%B9%B6%E6%9F%A5%E9%9B%86%E7%90%86%E8%AE%BA%E5%9F%BA%E7%A1%80.html) 的讲解。
|
||
|
||
## 拓展一
|
||
|
||
如果题目要求将最小生成树的边输出的话,应该怎么办呢?
|
||
|
||
Kruskal 算法 输出边的话,相对prim 要容易很多,因为 Kruskal 本来就是直接操作边,边的结构自然清晰,不用像 prim一样 需要再节点练成线输出边 (因为prim是对节点操作,而 Kruskal是对边操作,这是本质区别)
|
||
|
||
本题中,边的结构为:
|
||
|
||
```CPP
|
||
struct Edge {
|
||
int l, r, val;
|
||
};
|
||
```
|
||
|
||
那么我们只需要找到 在哪里把生成树的边保存下来就可以了。
|
||
|
||
当判断两个节点不在同一个集合的时候,这两个节点的边就加入到最小生成树, 所以添加边的操作在这里:
|
||
|
||
```CPP
|
||
vector<Edge> result; // 存储最小生成树的边
|
||
// 如果祖先不同,则不在同一个集合
|
||
if (x != y) {
|
||
result.push_back(edge); // 记录最小生成树的边
|
||
result_val += edge.val; // 这条边可以作为生成树的边
|
||
join(x, y); // 两个节点加入到同一个集合
|
||
}
|
||
```
|
||
|
||
整体代码如下,为了突出重点,我仅仅将 打印最小生成树的部分代码注释了,大家更容易看到哪些改动。
|
||
|
||
```CPP
|
||
#include <iostream>
|
||
#include <vector>
|
||
#include <algorithm>
|
||
|
||
using namespace std;
|
||
|
||
struct Edge {
|
||
int l, r, val;
|
||
};
|
||
|
||
|
||
int n = 10001;
|
||
|
||
vector<int> father(n, -1);
|
||
|
||
void init() {
|
||
for (int i = 0; i < n; ++i) {
|
||
father[i] = i;
|
||
}
|
||
}
|
||
|
||
int find(int u) {
|
||
return u == father[u] ? u : father[u] = find(father[u]);
|
||
}
|
||
|
||
void join(int u, int v) {
|
||
u = find(u);
|
||
v = find(v);
|
||
if (u == v) return ;
|
||
father[v] = u;
|
||
}
|
||
|
||
int main() {
|
||
|
||
int v, e;
|
||
int v1, v2, val;
|
||
vector<Edge> edges;
|
||
int result_val = 0;
|
||
cin >> v >> e;
|
||
while (e--) {
|
||
cin >> v1 >> v2 >> val;
|
||
edges.push_back({v1, v2, val});
|
||
}
|
||
|
||
sort(edges.begin(), edges.end(), [](const Edge& a, const Edge& b) {
|
||
return a.val < b.val;
|
||
});
|
||
|
||
vector<Edge> result; // 存储最小生成树的边
|
||
|
||
init();
|
||
|
||
for (Edge edge : edges) {
|
||
|
||
int x = find(edge.l);
|
||
int y = find(edge.r);
|
||
|
||
|
||
if (x != y) {
|
||
result.push_back(edge); // 保存最小生成树的边
|
||
result_val += edge.val;
|
||
join(x, y);
|
||
}
|
||
}
|
||
|
||
// 打印最小生成树的边
|
||
for (Edge edge : result) {
|
||
cout << edge.l << " - " << edge.r << " : " << edge.val << endl;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
|
||
```
|
||
|
||
按照题目中的示例,打印边的输出为:
|
||
|
||
```
|
||
1 - 2 : 1
|
||
1 - 3 : 1
|
||
2 - 6 : 1
|
||
3 - 4 : 1
|
||
4 - 5 : 1
|
||
5 - 7 : 1
|
||
```
|
||
|
||
大家可能发现 怎么和我们 模拟画的图不一样,差别在于 代码生成的最小生成树中 节点5 和 节点7相连的。
|
||
|
||

|
||
|
||
|
||
其实造成这个差别 是对边排序的时候 权值相同的边先后顺序的问题导致的,无论相同权值边的顺序是什么样的,最后都能得出最小生成树。
|
||
|
||
|
||
## 拓展二
|
||
|
||
|
||
此时我们已经讲完了 Kruskal 和 prim 两个解法来求最小生成树。
|
||
|
||
什么情况用哪个算法更合适呢。
|
||
|
||
Kruskal 与 prim 的关键区别在于,prim维护的是节点的集合,而 Kruskal 维护的是边的集合。
|
||
如果 一个图中,节点多,但边相对较少,那么使用Kruskal 更优。
|
||
|
||
有录友可能疑惑,一个图里怎么可能节点多,边却少呢?
|
||
|
||
节点未必一定要连着边那, 例如 这个图,大家能明显感受到边没有那么多对吧,但节点数量 和 上述我们讲的例子是一样的。
|
||
|
||

|
||
|
||
为什么边少的话,使用 Kruskal 更优呢?
|
||
|
||
因为 Kruskal 是对边进行排序的后 进行操作是否加入到最小生成树。
|
||
|
||
边如果少,那么遍历操作的次数就少。
|
||
|
||
在节点数量固定的情况下,图中的边越少,Kruskal 需要遍历的边也就越少。
|
||
|
||
而 prim 算法是对节点进行操作的,节点数量越少,prim算法效率就越少。
|
||
|
||
所以在 稀疏图中,用Kruskal更优。 在稠密图中,用prim算法更优。
|
||
|
||
> 边数量较少为稀疏图,接近或等于完全图(所有节点皆相连)为稠密图
|
||
|
||
|
||
Prim 算法 时间复杂度为 O(n^2),其中 n 为节点数量,它的运行效率和图中边树无关,适用稠密图。
|
||
|
||
Kruskal算法 时间复杂度 为 nlogn,其中n 为边的数量,适用稀疏图。
|
||
|
||
## 总结
|
||
|
||
如果学过了并查集,其实 kruskal 比 prim更好理解一些。
|
||
|
||
本篇,我们依然通过模拟 Kruskal 算法的过程,来带大家一步步了解其工作过程。
|
||
|
||
在 拓展一 中讲解了 如何输出最小生成树的边。
|
||
|
||
在拓展二 中讲解了 prim 和 Kruskal的区别。
|
||
|
||
录友们可以细细体会。
|
||
|
||
|