9.6 KiB
Bellman_ford 队列优化算法(又名SPFA)
题目描述
某国为促进城市间经济交流,决定对货物运输提供补贴。共有 n 个编号为 1 到 n 的城市,通过道路网络连接,网络中的道路仅允许从某个城市单向通行到另一个城市,不能反向通行。
网络中的道路都有各自的运输成本和政府补贴,道路的权值计算方式为:运输成本 - 政府补贴。权值为正表示扣除了政府补贴后运输货物仍需支付的费用;权值为负则表示政府的补贴超过了支出的运输成本,实际表现为运输过程中还能赚取一定的收益。
请找出从城市 1 到城市 n 的所有可能路径中,综合政府补贴后的最低运输成本。如果最低运输成本是一个负数,它表示在遵循最优路径的情况下,运输过程中反而能够实现盈利。
城市 1 到城市 n 之间可能会出现没有路径的情况,同时保证道路网络中不存在任何负权回路。
输入描述
第一行包含两个正整数,第一个正整数 n 表示该国一共有 n 个城市,第二个整数 m 表示这些城市中共有 m 条道路。
接下来为 m 行,每行包括三个整数,s、t 和 v,表示 s 号城市运输货物到达 t 号城市,道路权值为 v(单向图)。
输出描述
如果能够从城市 1 到连通到城市 n, 请输出一个整数,表示运输成本。如果该整数是负数,则表示实现了盈利。如果从城市 1 没有路径可达城市 n,请输出 "unconnected"。
输入示例:
6 7
5 6 -2
1 2 1
5 3 1
2 5 2
2 4 -3
4 6 4
1 3 5
思路
本题我们来系统讲解 Bellman_ford 队列优化算法 ,也叫SPFA算法(Shortest Path Faster Algorithm)。
SPFA的称呼来自 1994年西南交通大学段凡丁的论文,其实Bellman_ford 提出后不久 (20世纪50年代末期) 就有队列优化的版本,国际上不承认这个算法是是国内提出的。 所以国际上一般称呼 算法为 Bellman_ford 队列优化算法(Queue improved Bellman-Ford)
大家知道以上来历,知道 SPFA 和 Bellman_ford 队列优化算法 指的都是一个算法就好。
如果大家还不够了解 Bellman_ford 算法,强烈建议按照《代码随想录》的顺序学习,否则可能看不懂下面的讲解。
大家可以发现 Bellman_ford 算法每次松弛 都是对所有边进行松弛。
但真正有效的松弛,是基于已经计算过的节点在做的松弛。
给大家举一个例子:
本图中,对所有边进行松弛,真正有效的松弛,只有松弛 边(节点1->节点2) 和 边(节点1->节点5) 。
而松弛 边(节点4->节点6) ,边(节点5->节点3)等等 都是无效的操作,因为 节点4 和 节点 5 都是没有被计算过的节点。
所以 Bellman_ford 算法 每次都是对所有边进行松弛,其实是多做了一些无用功。
只需要对 上一次松弛的时候更新过的节点作为出发节点所连接的边 进行松弛就够了。
基于以上思路,如何记录 上次松弛的时候更新过的节点呢?
用队列来记录。
接下来来举例这个队列是如何工作的。
以示例给出的所有边为例:
5 6 -2
1 2 1
5 3 1
2 5 2
2 4 -3
4 6 4
1 3 5
我们依然使用minDist数组来表达 起点到各个节点的最短距离,例如minDist[3] = 5 表示起点到达节点3 的最小距离为5
初始化,起点为节点1, 起点到起点的最短距离为0,所以minDist[1] 为 0。 将节点1 加入队列 (下次松弛送节点1开始)
从队列里取出节点1,松弛节点1 作为出发点链接的边(节点1 -> 节点2)和边(节点1 -> 节点3)
边:节点1 -> 节点2,权值为1 ,minDist[2] > minDist[1] + 1 ,更新 minDist[2] = minDist[1] + 1 = 0 + 1 = 1 。
边:节点1 -> 节点3,权值为5 ,minDist[3] > minDist[1] + 5,更新 minDist[3] = minDist[1] + 5 = 0 + 5 = 5。
将节点2,节点3 加入队列,如图:
从队列里取出节点2,松弛节点2 作为出发点链接的边(节点2 -> 节点4)和边(节点2 -> 节点5)
边:节点2 -> 节点4,权值为1 ,minDist[4] > minDist[2] + (-3) ,更新 minDist[4] = minDist[2] + (-3) = 1 + (-3) = -2 。
边:节点2 -> 节点5,权值为2 ,minDist[5] > minDist[2] + 2 ,更新 minDist[5] = minDist[2] + 2 = 1 + 2 = 3 。
将节点4,节点5 加入队列,如图:
从队列里出去节点3,松弛节点3 作为出发点链接的边。
因为没有从节点3作为出发点的边,所以这里就从队列里取出节点3就好,不用做其他操作,如图:
从队列中取出节点4,松弛节点4作为出发点链接的边(节点4 -> 节点6)
边:节点4 -> 节点6,权值为4 ,minDist[6] > minDist[4] + 4,更新 minDist[6] = minDist[4] + 4 = -2 + 4 = 2 。
讲节点6加入队列
如图:
从队列中取出节点5,松弛节点5作为出发点链接的边(节点5 -> 节点3),边(节点5 -> 节点6)
边:节点5 -> 节点3,权值为1 ,minDist[3] > minDist[5] + 1 ,更新 minDist[3] = minDist[5] + 1 = 3 + 1 = 4
边:节点5 -> 节点6,权值为-2 ,minDist[6] > minDist[5] + (-2) ,更新 minDist[6] = minDist[5] + (-2) = 3 - 2 = 1
如图:
因为节点3,和 节点6 都曾经加入过队列,不用重复加入,避免重复计算。
从队列中取出节点6,松弛节点6 作为出发点链接的边。
节点6作为终点,没有可以出发的边。
所以直接从队列中取出,如图:
这样我们就完成了基于队列优化的bellman_ford的算法模拟过程。
大家可以发现 基于队列优化的算法,要比bellman_ford 算法 减少很多无用的松弛情况,特别是对于边树众多的大图 优化效果明显。
了解了大体流程,我们再看代码应该怎么写。
在上面模拟过程中,我们每次都要知道 一个节点作为出发点 链接了哪些节点。
如果想方便这道这些数据,就需要使用邻接表来存储这个图,如果对于邻接表不了解的话,可以看 kama0047.参会dijkstra堆 中 图的存储 部分。
代码如下:
#include <iostream>
#include <vector>
#include <queue>
#include <list>
#include <climits>
using namespace std;
struct Edge { //邻接表
int to; // 链接的节点
int val; // 边的权重
Edge(int t, int w): to(t), val(w) {} // 构造函数
};
int main() {
int n, m, p1, p2, val;
cin >> n >> m;
vector<list<Edge>> grid(n + 1); // 邻接表
// 将所有边保存起来
for(int i = 0; i < m; i++){
cin >> p1 >> p2 >> val;
// p1 指向 p2,权值为 val
grid[p1].push_back(Edge(p2, val));
}
int start = 1; // 起点
int end = n; // 终点
vector<int> minDist(n + 1 , INT_MAX);
minDist[start] = 0;
queue<int> que;
que.push(start);
int que_size;
while (!que.empty()) {
// 注意这个数组放的位置
vector<bool> visited(n + 1, false); // 可加,可不加,加了效率高一些,防止队列里重复访问,其数值已经算过了
que_size = que.size();
int node = que.front(); que.pop();
for (Edge edge : grid[node]) {
int from = node;
int to = edge.to;
int price = edge.val;
if (minDist[to] > minDist[from] + price) { // 开始松弛
minDist[to] = minDist[from] + price;
if(visited[to]) continue; // 节点不用重复放入队列,但节点需要重复计算,所以放在这里位置
visited[to] = true;
que.push(to);
}
}
}
if (minDist[end] == INT_MAX) cout << "unconnected" << endl; // 不能到达终点
else cout << minDist[end] << endl; // 到达终点最短路径
}
代码中有一点需要注意,即 if(visited[to]) continue;
这段代码放的位置。
一些录友可能写成这样:
if (minDist[to] > minDist[from] + price) { // 开始松弛
if(visited[to]) continue;
minDist[to] = minDist[from] + price;
visited[to] = true;
que.push(to);
}
这是不对了,我们仅仅是控制节点不用重复加入队列,但对于边的松弛,节点数值的更新,是要重复计算的,要不然如何 不断更新最短路径呢?
所以 if(visited[to]) continue;
应该放在这里:
if (minDist[to] > minDist[from] + price) { // 开始松弛
minDist[to] = minDist[from] + price;
if(visited[to]) continue; // 仅仅控制节点不要重复加入队列
visited[to] = true;
que.push(to);
}
拓展
关于 加visited 方式节点重复方便,可能也有录友认为,加上 visited 也是防止 如果图中出现了环的话,会导致的 队列里一直不为空。