mirror of
https://github.com/youngyangyang04/leetcode-master.git
synced 2025-07-06 07:06:42 +08:00
从二维到一维 重讲完全背包
This commit is contained in:
211
problems/背包问题完全背包一维.md
Normal file
211
problems/背包问题完全背包一维.md
Normal file
@ -0,0 +1,211 @@
|
||||
|
||||
# 完全背包-一维数组
|
||||
|
||||
本题力扣上没有原题,大家可以去[卡码网第52题](https://kamacoder.com/problempage.php?pid=1052)去练习。
|
||||
|
||||
## 算法公开课
|
||||
|
||||
**[《代码随想录》算法视频公开课](https://programmercarl.com/other/gongkaike.html):[带你学透完全背包问题! ](https://www.bilibili.com/video/BV1uK411o7c9/),相信结合视频再看本篇题解,更有助于大家对本题的理解**。
|
||||
|
||||
|
||||
## 思路
|
||||
|
||||
本篇我们不再做五部曲分析,核心内容 在 01背包二维 、01背包一维 和 完全背包二维 的讲解中都讲过了。
|
||||
|
||||
上一篇我们刚刚讲了完全背包二维DP数组的写法:
|
||||
|
||||
```CPP
|
||||
for (int i = 1; i < n; i++) { // 遍历物品
|
||||
for(int j = 0; j <= bagWeight; j++) { // 遍历背包容量
|
||||
if (j < weight[i]) dp[i][j] = dp[i - 1][j];
|
||||
else dp[i][j] = max(dp[i - 1][j], dp[i][j - weight[i]] + value[i]);
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
压缩成一维DP数组,也就是将上一层拷贝到当前层。
|
||||
|
||||
将上一层dp[i-1] 的那一层拷贝到 当前层 dp[i] ,那么 递推公式由:`dp[i][j] = max(dp[i - 1][j], dp[i][j - weight[i]] + value[i])` 变成: `dp[i][j] = max(dp[i][j], dp[i][j - weight[i]] + value[i])`
|
||||
|
||||
这里有录友想,这样拷贝的话, dp[i - 1][j] 的数值会不会 覆盖了 dp[i][j] 的数值呢?
|
||||
|
||||
并不会,因为 当前层 dp[i][j] 是空的,是没有计算过的。
|
||||
|
||||
变成 `dp[i][j] = max(dp[i][j], dp[i][j - weight[i]] + value[i])` 我们压缩成一维dp数组,去掉 i 层数维度。
|
||||
|
||||
即:`dp[j] = max(dp[j], dp[j - weight[i]] + value[i])`
|
||||
|
||||
|
||||
接下来我们重点讲一下遍历顺序。
|
||||
|
||||
看过这两篇的话:
|
||||
|
||||
* [01背包理论基础(二维数组)](https://programmercarl.com/背包理论基础01背包-1.html)
|
||||
* [01背包理论基础(一维数组)](https://programmercarl.com/背包理论基础01背包-2.html)
|
||||
|
||||
就知道了,01背包中二维dp数组的两个for遍历的先后循序是可以颠倒了,一维dp数组的两个for循环先后循序一定是先遍历物品,再遍历背包容量。
|
||||
|
||||
**在完全背包中,对于一维dp数组来说,其实两个for循环嵌套顺序是无所谓的**!
|
||||
|
||||
因为dp[j] 是根据 下标j之前所对应的dp[j]计算出来的。 只要保证下标j之前的dp[j]都是经过计算的就可以了。
|
||||
|
||||
遍历物品在外层循环,遍历背包容量在内层循环,状态如图:
|
||||
|
||||

|
||||
|
||||
遍历背包容量在外层循环,遍历物品在内层循环,状态如图:
|
||||
|
||||

|
||||
|
||||
看了这两个图,大家就会理解,完全背包中,两个for循环的先后循序,都不影响计算dp[j]所需要的值(这个值就是下标j之前所对应的dp[j])。
|
||||
|
||||
先遍历背包再遍历物品,代码如下:
|
||||
|
||||
```CPP
|
||||
for(int j = 0; j <= bagWeight; j++) { // 遍历背包容量
|
||||
for(int i = 0; i < weight.size(); i++) { // 遍历物品
|
||||
if (j - weight[i] >= 0) dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
|
||||
}
|
||||
cout << endl;
|
||||
}
|
||||
```
|
||||
|
||||
先遍历物品再遍历背包:
|
||||
|
||||
```CPP
|
||||
for(int i = 0; i < weight.size(); i++) { // 遍历物品
|
||||
for(int j = 0; j <= bagWeight; j++) { // 遍历背包容量
|
||||
if (j - weight[i] >= 0) dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
整体代码如下:
|
||||
|
||||
```cpp
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
using namespace std;
|
||||
|
||||
int main() {
|
||||
int N, bagWeight;
|
||||
cin >> N >> bagWeight;
|
||||
vector<int> weight(N, 0);
|
||||
vector<int> value(N, 0);
|
||||
for (int i = 0; i < N; i++) {
|
||||
int w;
|
||||
int v;
|
||||
cin >> w >> v;
|
||||
weight[i] = w;
|
||||
value[i] = v;
|
||||
}
|
||||
|
||||
vector<int> dp(bagWeight + 1, 0);
|
||||
for(int j = 0; j <= bagWeight; j++) { // 遍历背包容量
|
||||
for(int i = 0; i < weight.size(); i++) { // 遍历物品
|
||||
if (j - weight[i] >= 0) dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
|
||||
}
|
||||
}
|
||||
cout << dp[bagWeight] << endl;
|
||||
|
||||
return 0;
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
|
||||
## 总结
|
||||
|
||||
细心的同学可能发现,**全文我说的都是对于纯完全背包问题,其for循环的先后循环是可以颠倒的!**
|
||||
|
||||
但如果题目稍稍有点变化,就会体现在遍历顺序上。
|
||||
|
||||
如果问装满背包有几种方式的话? 那么两个for循环的先后顺序就有很大区别了,而leetcode上的题目都是这种稍有变化的类型。
|
||||
|
||||
这个区别,我将在后面讲解具体leetcode题目中给大家介绍,因为这块如果不结合具题目,单纯的介绍原理估计很多同学会越看越懵!
|
||||
|
||||
别急,下一篇就是了!
|
||||
|
||||
最后,**又可以出一道面试题了,就是纯完全背包,要求先用二维dp数组实现,然后再用一维dp数组实现,最后再问,两个for循环的先后是否可以颠倒?为什么?**
|
||||
|
||||
这个简单的完全背包问题,估计就可以难住不少候选人了。
|
||||
|
||||
|
||||
## 其他语言版本
|
||||
|
||||
### Java:
|
||||
|
||||
```java
|
||||
import java.util.Scanner;
|
||||
|
||||
public class Main {
|
||||
public static void main(String[] args) {
|
||||
Scanner scanner = new Scanner(System.in);
|
||||
int N = scanner.nextInt();
|
||||
int bagWeight = scanner.nextInt();
|
||||
|
||||
int[] weight = new int[N];
|
||||
int[] value = new int[N];
|
||||
for (int i = 0; i < N; i++) {
|
||||
weight[i] = scanner.nextInt();
|
||||
value[i] = scanner.nextInt();
|
||||
}
|
||||
|
||||
int[] dp = new int[bagWeight + 1];
|
||||
|
||||
for (int j = 0; j <= bagWeight; j++) { // 遍历背包容量
|
||||
for (int i = 0; i < weight.length; i++) { // 遍历物品
|
||||
if (j >= weight[i]) {
|
||||
dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
System.out.println(dp[bagWeight]);
|
||||
scanner.close();
|
||||
}
|
||||
}
|
||||
|
||||
```
|
||||
|
||||
|
||||
|
||||
### Python:
|
||||
|
||||
```python
|
||||
def complete_knapsack(N, bag_weight, weight, value):
|
||||
dp = [0] * (bag_weight + 1)
|
||||
|
||||
for j in range(bag_weight + 1): # 遍历背包容量
|
||||
for i in range(len(weight)): # 遍历物品
|
||||
if j >= weight[i]:
|
||||
dp[j] = max(dp[j], dp[j - weight[i]] + value[i])
|
||||
|
||||
return dp[bag_weight]
|
||||
|
||||
# 输入
|
||||
N, bag_weight = map(int, input().split())
|
||||
weight = []
|
||||
value = []
|
||||
for _ in range(N):
|
||||
w, v = map(int, input().split())
|
||||
weight.append(w)
|
||||
value.append(v)
|
||||
|
||||
# 输出结果
|
||||
print(complete_knapsack(N, bag_weight, weight, value))
|
||||
|
||||
|
||||
```
|
||||
|
||||
|
||||
### Go:
|
||||
|
||||
```go
|
||||
|
||||
```
|
||||
### Javascript:
|
||||
|
||||
```Javascript
|
||||
```
|
||||
|
@ -5,18 +5,11 @@
|
||||
<p align="center"><strong><a href="./qita/join.md">参与本项目</a>,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们受益!</strong></p>
|
||||
|
||||
|
||||
# 动态规划:完全背包理论基础
|
||||
# 完全背包理论基础-二维DP数组
|
||||
|
||||
本题力扣上没有原题,大家可以去[卡码网第52题](https://kamacoder.com/problempage.php?pid=1052)去练习,题意是一样的。
|
||||
|
||||
## 算法公开课
|
||||
|
||||
**[《代码随想录》算法视频公开课](https://programmercarl.com/other/gongkaike.html):[带你学透完全背包问题! ](https://www.bilibili.com/video/BV1uK411o7c9/),相信结合视频再看本篇题解,更有助于大家对本题的理解**。
|
||||
|
||||
## 思路
|
||||
|
||||
### 完全背包
|
||||
|
||||
## 完全背包
|
||||
|
||||
有N件物品和一个最多能背重量为W的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。**每件物品都有无限个(也就是可以放入背包多次)**,求解将哪些物品装入背包里物品价值总和最大。
|
||||
|
||||
@ -24,14 +17,12 @@
|
||||
|
||||
同样leetcode上没有纯完全背包问题,都是需要完全背包的各种应用,需要转化成完全背包问题,所以我这里还是以纯完全背包问题进行讲解理论和原理。
|
||||
|
||||
在下面的讲解中,我依然举这个例子:
|
||||
在下面的讲解中,我拿下面数据举例子:
|
||||
|
||||
背包最大重量为4。
|
||||
|
||||
物品为:
|
||||
背包最大重量为4,物品为:
|
||||
|
||||
| | 重量 | 价值 |
|
||||
| --- | --- | --- |
|
||||
| ----- | ---- | ---- |
|
||||
| 物品0 | 1 | 15 |
|
||||
| 物品1 | 3 | 20 |
|
||||
| 物品2 | 4 | 30 |
|
||||
@ -40,471 +31,292 @@
|
||||
|
||||
问背包能背的物品最大价值是多少?
|
||||
|
||||
01背包和完全背包唯一不同就是体现在遍历顺序上,所以本文就不去做动规五部曲了,我们直接针对遍历顺序经行分析!
|
||||
**如果没看到之前的01背包讲解,已经要先仔细看如下两篇,01背包是基础,本篇在讲解完全背包,之前的背包基础我将不会重复讲解**。
|
||||
|
||||
关于01背包我如下两篇已经进行深入分析了:
|
||||
* [01背包理论基础(二维数组)](https://programmercarl.com/背包理论基础01背包-1.html)
|
||||
* [01背包理论基础(一维数组)](https://programmercarl.com/背包理论基础01背包-2.html)
|
||||
|
||||
* [动态规划:关于01背包问题,你该了解这些!](https://programmercarl.com/背包理论基础01背包-1.html)
|
||||
* [动态规划:关于01背包问题,你该了解这些!(滚动数组)](https://programmercarl.com/背包理论基础01背包-2.html)
|
||||
动规五部曲分析完全背包,为了从原理上讲清楚,我们先从二维dp数组分析:
|
||||
|
||||
首先再回顾一下01背包的核心代码
|
||||
```cpp
|
||||
for(int i = 0; i < weight.size(); i++) { // 遍历物品
|
||||
for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量
|
||||
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
|
||||
}
|
||||
### 1. 确定dp数组以及下标的含义
|
||||
|
||||
**dp[i][j] 表示从下标为[0-i]的物品,每个物品可以取无限次,放进容量为j的背包,价值总和最大是多少**。
|
||||
|
||||
很多录友也会疑惑,凭什么上来就定义 dp数组,思考过程是什么样的, 这个思考过程我在 [01背包理论基础(二维数组)](https://programmercarl.com/背包理论基础01背包-1.html) 中的 “确定dp数组以及下标的含义” 有详细讲解。
|
||||
|
||||
|
||||
### 2. 确定递推公式
|
||||
|
||||
这里在把基本信息给出来:
|
||||
|
||||
| | 重量 | 价值 |
|
||||
| ----- | ---- | ---- |
|
||||
| 物品0 | 1 | 15 |
|
||||
| 物品1 | 3 | 20 |
|
||||
| 物品2 | 4 | 30 |
|
||||
|
||||
对于递推公式,首先我们要明确有哪些方向可以推导出 dp[i][j]。
|
||||
|
||||
这里依然拿dp[1][4]的状态来举例: ([01背包理论基础(二维数组)](https://programmercarl.com/背包理论基础01背包-1.html) 中也是这个例子,要注意下面的不同之处)
|
||||
|
||||
求取 dp[1][4] 有两种情况:
|
||||
|
||||
1. 放物品1
|
||||
2. 还是不放物品1
|
||||
|
||||
如果不放物品1, 那么背包的价值应该是 dp[0][4] 即 容量为4的背包,只放物品0的情况。
|
||||
|
||||
推导方向如图:
|
||||
|
||||

|
||||
|
||||
如果放物品1, **那么背包要先留出物品1的容量**,目前容量是4,物品1 的容量(就是物品1的重量)为3,此时背包剩下容量为1。
|
||||
|
||||
容量为1,只考虑放物品0 和物品1 的最大价值是 dp[1][1], **注意 这里和 [01背包理论基础(二维数组)](https://programmercarl.com/背包理论基础01背包-1.html) 有所不同了**!
|
||||
|
||||
在 [01背包理论基础(二维数组)](https://programmercarl.com/背包理论基础01背包-1.html) 中,背包先空留出物品1的容量,此时容量为1,只考虑放物品0的最大价值是 dp[0][1],**因为01背包每个物品只有一个,既然空出物品1,那背包中也不会再有物品1**!
|
||||
|
||||
而在完全背包中,物品是可以放无限个,所以 即使空出物品1空间重量,那背包中也可能还有物品1,所以此时我们依然考虑放 物品0 和 物品1 的最大价值即: **dp[1][1], 而不是 dp[0][1]**
|
||||
|
||||
所以 放物品1 的情况 = dp[1][1] + 物品1 的价值,推导方向如图:
|
||||
|
||||

|
||||
|
||||
|
||||
(**注意上图和 [01背包理论基础(二维数组)](https://programmercarl.com/背包理论基础01背包-1.html) 中的区别**,对于理解完全背包很重要)
|
||||
|
||||
两种情况,分别是放物品1 和 不放物品1,我们要取最大值(毕竟求的是最大价值)
|
||||
|
||||
`dp[1][4] = max(dp[0][4], dp[1][1] + 物品1 的价值) `
|
||||
|
||||
以上过程,抽象化如下:
|
||||
|
||||
* **不放物品i**:背包容量为j,里面不放物品i的最大价值是dp[i - 1][j]。
|
||||
|
||||
* **放物品i**:背包空出物品i的容量后,背包容量为j - weight[i],dp[i][j - weight[i]] 为背包容量为j - weight[i]且不放物品i的最大价值,那么dp[i][j - weight[i]] + value[i] (物品i的价值),就是背包放物品i得到的最大价值
|
||||
|
||||
递归公式: `dp[i][j] = max(dp[i - 1][j], dp[i][j - weight[i]] + value[i]);`
|
||||
|
||||
(注意,完全背包二维dp数组 和 01背包二维dp数组 递推公式的区别,01背包中是 `dp[i - 1][j - weight[i]] + value[i])`)
|
||||
|
||||
### 3. dp数组如何初始化
|
||||
|
||||
**关于初始化,一定要和dp数组的定义吻合,否则到递推公式的时候就会越来越乱**。
|
||||
|
||||
首先从dp[i][j]的定义出发,如果背包容量j为0的话,即dp[i][0],无论是选取哪些物品,背包价值总和一定为0。如图:
|
||||
|
||||

|
||||
|
||||
在看其他情况。
|
||||
|
||||
状态转移方程 `dp[i][j] = max(dp[i - 1][j], dp[i][j - weight[i]] + value[i]);` 可以看出有一个方向 i 是由 i-1 推导出来,那么i为0的时候就一定要初始化。
|
||||
|
||||
dp[0][j],即:存放编号0的物品的时候,各个容量的背包所能存放的最大价值。
|
||||
|
||||
那么很明显当 `j < weight[0]`的时候,dp[0][j] 应该是 0,因为背包容量比编号0的物品重量还小。
|
||||
|
||||
当`j >= weight[0]`时,**dp[0][j] 如果能放下weight[0]的话,就一直装,每一种物品有无限个**。
|
||||
|
||||
代码初始化如下:
|
||||
|
||||
```CPP
|
||||
for (int i = 1; i < weight.size(); i++) { // 当然这一步,如果把dp数组预先初始化为0了,这一步就可以省略,但很多同学应该没有想清楚这一点。
|
||||
dp[i][0] = 0;
|
||||
}
|
||||
|
||||
// 正序遍历,如果能放下就一直装物品0
|
||||
for (int j = weight[0]; j <= bagWeight; j++)
|
||||
dp[0][j] = dp[0][j - weight[0]] + value[0];
|
||||
```
|
||||
|
||||
(注意上面初始化和 [01背包理论基础(二维数组)](https://programmercarl.com/背包理论基础01背包-1.html)的区别在于物品有无限个)
|
||||
|
||||
|
||||
此时dp数组初始化情况如图所示:
|
||||
|
||||

|
||||
|
||||
dp[0][j] 和 dp[i][0] 都已经初始化了,那么其他下标应该初始化多少呢?
|
||||
|
||||
其实从递归公式: dp[i][j] = max(dp[i - 1][j], dp[i][j - weight[i]] + value[i]); 可以看出dp[i][j] 是由上方和左方数值推导出来了,那么 其他下标初始为什么数值都可以,因为都会被覆盖。
|
||||
|
||||
但只不过一开始就统一把dp数组统一初始为0,更方便一些。
|
||||
|
||||
最后初始化代码如下:
|
||||
|
||||
```CPP
|
||||
// 初始化 dp
|
||||
vector<vector<int>> dp(weight.size(), vector<int>(bagweight + 1, 0));
|
||||
for (int j = weight[0]; j <= bagWeight; j++) {
|
||||
dp[0][j] = dp[0][j - weight[0]] + value[0];
|
||||
}
|
||||
```
|
||||
|
||||
我们知道01背包内嵌的循环是从大到小遍历,为了保证每个物品仅被添加一次。
|
||||
|
||||
而完全背包的物品是可以添加多次的,所以要从小到大去遍历,即:
|
||||
### 4. 确定遍历顺序
|
||||
|
||||
```CPP
|
||||
// 先遍历物品,再遍历背包
|
||||
for(int i = 0; i < weight.size(); i++) { // 遍历物品
|
||||
for(int j = weight[i]; j <= bagWeight ; j++) { // 遍历背包容量
|
||||
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
|
||||
[01背包理论基础(二维数组)](https://programmercarl.com/背包理论基础01背包-1.html) 中我们讲过,01背包二维DP数组,先遍历物品还是先遍历背包都是可以的。
|
||||
|
||||
}
|
||||
}
|
||||
```
|
||||
因为两种遍历顺序,对于二维dp数组来说,递推公式所需要的值,二维dp数组里对应的位置都有。
|
||||
|
||||
至于为什么,我在[动态规划:关于01背包问题,你该了解这些!(滚动数组)](https://programmercarl.com/背包理论基础01背包-2.html)中也做了讲解。
|
||||
详细可以看 [01背包理论基础(二维数组)](https://programmercarl.com/背包理论基础01背包-1.html) 中的 【遍历顺序】的讲解
|
||||
|
||||
dp状态图如下:
|
||||
|
||||
|
||||

|
||||
|
||||
相信很多同学看网上的文章,关于完全背包介绍基本就到为止了。
|
||||
|
||||
**其实还有一个很重要的问题,为什么遍历物品在外层循环,遍历背包容量在内层循环?**
|
||||
|
||||
这个问题很多题解关于这里都是轻描淡写就略过了,大家都默认 遍历物品在外层,遍历背包容量在内层,好像本应该如此一样,那么为什么呢?
|
||||
|
||||
难道就不能遍历背包容量在外层,遍历物品在内层?
|
||||
|
||||
|
||||
看过这两篇的话:
|
||||
* [动态规划:关于01背包问题,你该了解这些!](https://programmercarl.com/背包理论基础01背包-1.html)
|
||||
* [动态规划:关于01背包问题,你该了解这些!(滚动数组)](https://programmercarl.com/背包理论基础01背包-2.html)
|
||||
|
||||
就知道了,01背包中二维dp数组的两个for遍历的先后循序是可以颠倒了,一维dp数组的两个for循环先后循序一定是先遍历物品,再遍历背包容量。
|
||||
|
||||
**在完全背包中,对于一维dp数组来说,其实两个for循环嵌套顺序是无所谓的!**
|
||||
|
||||
因为dp[j] 是根据 下标j之前所对应的dp[j]计算出来的。 只要保证下标j之前的dp[j]都是经过计算的就可以了。
|
||||
|
||||
遍历物品在外层循环,遍历背包容量在内层循环,状态如图:
|
||||
|
||||
|
||||

|
||||
|
||||
遍历背包容量在外层循环,遍历物品在内层循环,状态如图:
|
||||
|
||||

|
||||
|
||||
看了这两个图,大家就会理解,完全背包中,两个for循环的先后循序,都不影响计算dp[j]所需要的值(这个值就是下标j之前所对应的dp[j])。
|
||||
|
||||
先遍历背包在遍历物品,代码如下:
|
||||
|
||||
```CPP
|
||||
// 先遍历背包,再遍历物品
|
||||
for(int j = 0; j <= bagWeight; j++) { // 遍历背包容量
|
||||
for(int i = 0; i < weight.size(); i++) { // 遍历物品
|
||||
if (j - weight[i] >= 0) dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
|
||||
}
|
||||
cout << endl;
|
||||
}
|
||||
```
|
||||
|
||||
完整的C++测试代码如下:
|
||||
|
||||
```CPP
|
||||
// 先遍历物品,在遍历背包
|
||||
void test_CompletePack() {
|
||||
vector<int> weight = {1, 3, 4};
|
||||
vector<int> value = {15, 20, 30};
|
||||
int bagWeight = 4;
|
||||
vector<int> dp(bagWeight + 1, 0);
|
||||
for(int i = 0; i < weight.size(); i++) { // 遍历物品
|
||||
for(int j = weight[i]; j <= bagWeight; j++) { // 遍历背包容量
|
||||
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
|
||||
}
|
||||
}
|
||||
cout << dp[bagWeight] << endl;
|
||||
}
|
||||
int main() {
|
||||
test_CompletePack();
|
||||
}
|
||||
|
||||
```
|
||||
|
||||
```CPP
|
||||
|
||||
// 先遍历背包,再遍历物品
|
||||
void test_CompletePack() {
|
||||
vector<int> weight = {1, 3, 4};
|
||||
vector<int> value = {15, 20, 30};
|
||||
int bagWeight = 4;
|
||||
|
||||
vector<int> dp(bagWeight + 1, 0);
|
||||
所以既可以 先遍历物品再遍历背包:
|
||||
|
||||
```CPP
|
||||
for (int i = 1; i < n; i++) { // 遍历物品
|
||||
for(int j = 0; j <= bagWeight; j++) { // 遍历背包容量
|
||||
for(int i = 0; i < weight.size(); i++) { // 遍历物品
|
||||
if (j - weight[i] >= 0) dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
|
||||
}
|
||||
if (j < weight[i]) dp[i][j] = dp[i - 1][j];
|
||||
else dp[i][j] = max(dp[i - 1][j], dp[i][j - weight[i]] + value[i]);
|
||||
}
|
||||
cout << dp[bagWeight] << endl;
|
||||
}
|
||||
int main() {
|
||||
test_CompletePack();
|
||||
}
|
||||
|
||||
```
|
||||
|
||||
本题力扣上没有原题,大家可以去[卡码网第52题](https://kamacoder.com/problempage.php?pid=1052)去练习,题意是一样的,C++代码如下:
|
||||
也可以 先遍历背包再遍历物品:
|
||||
|
||||
```cpp
|
||||
```CPP
|
||||
for(int j = 0; j <= bagWeight; j++) { // 遍历背包容量
|
||||
for (int i = 1; i < n; i++) { // 遍历物品
|
||||
if (j < weight[i]) dp[i][j] = dp[i - 1][j];
|
||||
else dp[i][j] = max(dp[i - 1][j], dp[i][j - weight[i]] + value[i]);
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### 5. 举例推导dp数组
|
||||
|
||||
以本篇举例数据为例,填满了dp二维数组如图:
|
||||
|
||||

|
||||
|
||||
因为 物品0 的性价比是最高的,而且 在完全背包中,每一类物品都有无限个,所以有无限个物品0,既然物品0 性价比最高,当然是优先放物品0。
|
||||
|
||||
|
||||
### 本题代码:
|
||||
|
||||
|
||||
```CPP
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
using namespace std;
|
||||
|
||||
// 先遍历背包,再遍历物品
|
||||
void test_CompletePack(vector<int> weight, vector<int> value, int bagWeight) {
|
||||
int main() {
|
||||
int n, bagWeight;
|
||||
int w, v;
|
||||
cin >> n >> bagWeight;
|
||||
vector<int> weight(n);
|
||||
vector<int> value(n);
|
||||
for (int i = 0; i < n; i++) {
|
||||
cin >> weight[i] >> value[i];
|
||||
}
|
||||
|
||||
vector<int> dp(bagWeight + 1, 0);
|
||||
vector<vector<int>> dp(n, vector<int>(bagWeight + 1, 0));
|
||||
|
||||
for(int j = 0; j <= bagWeight; j++) { // 遍历背包容量
|
||||
for(int i = 0; i < weight.size(); i++) { // 遍历物品
|
||||
if (j - weight[i] >= 0) dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
|
||||
// 初始化
|
||||
for (int j = weight[0]; j <= bagWeight; j++)
|
||||
dp[0][j] = dp[0][j - weight[0]] + value[0];
|
||||
|
||||
for (int i = 1; i < n; i++) { // 遍历物品
|
||||
for(int j = 0; j <= bagWeight; j++) { // 遍历背包容量
|
||||
if (j < weight[i]) dp[i][j] = dp[i - 1][j];
|
||||
else dp[i][j] = max(dp[i - 1][j], dp[i][j - weight[i]] + value[i]);
|
||||
}
|
||||
}
|
||||
cout << dp[bagWeight] << endl;
|
||||
}
|
||||
int main() {
|
||||
int N, V;
|
||||
cin >> N >> V;
|
||||
vector<int> weight;
|
||||
vector<int> value;
|
||||
for (int i = 0; i < N; i++) {
|
||||
int w;
|
||||
int v;
|
||||
cin >> w >> v;
|
||||
weight.push_back(w);
|
||||
value.push_back(v);
|
||||
}
|
||||
test_CompletePack(weight, value, V);
|
||||
|
||||
cout << dp[n - 1][bagWeight] << endl;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
```
|
||||
|
||||
|
||||
|
||||
## 总结
|
||||
|
||||
细心的同学可能发现,**全文我说的都是对于纯完全背包问题,其for循环的先后循环是可以颠倒的!**
|
||||
|
||||
但如果题目稍稍有点变化,就会体现在遍历顺序上。
|
||||
|
||||
如果问装满背包有几种方式的话? 那么两个for循环的先后顺序就有很大区别了,而leetcode上的题目都是这种稍有变化的类型。
|
||||
|
||||
这个区别,我将在后面讲解具体leetcode题目中给大家介绍,因为这块如果不结合具题目,单纯的介绍原理估计很多同学会越看越懵!
|
||||
|
||||
别急,下一篇就是了!
|
||||
|
||||
最后,**又可以出一道面试题了,就是纯完全背包,要求先用二维dp数组实现,然后再用一维dp数组实现,最后再问,两个for循环的先后是否可以颠倒?为什么?**
|
||||
这个简单的完全背包问题,估计就可以难住不少候选人了。
|
||||
|
||||
|
||||
|
||||
关于一维dp数组,大家看这里:[完全背包一维dp数组讲解](./背包问题完全背包一维.md)
|
||||
|
||||
## 其他语言版本
|
||||
|
||||
### Java:
|
||||
### Java
|
||||
|
||||
```java
|
||||
//先遍历物品,再遍历背包
|
||||
private static void testCompletePack(){
|
||||
int[] weight = {1, 3, 4};
|
||||
int[] value = {15, 20, 30};
|
||||
int bagWeight = 4;
|
||||
int[] dp = new int[bagWeight + 1];
|
||||
for (int i = 0; i < weight.length; i++){ // 遍历物品
|
||||
for (int j = weight[i]; j <= bagWeight; j++){ // 遍历背包容量
|
||||
dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i]);
|
||||
```Java
|
||||
import java.util.Scanner;
|
||||
|
||||
public class Main {
|
||||
public static void main(String[] args) {
|
||||
Scanner scanner = new Scanner(System.in);
|
||||
int n = scanner.nextInt();
|
||||
int bagWeight = scanner.nextInt();
|
||||
|
||||
int[] weight = new int[n];
|
||||
int[] value = new int[n];
|
||||
|
||||
for (int i = 0; i < n; i++) {
|
||||
weight[i] = scanner.nextInt();
|
||||
value[i] = scanner.nextInt();
|
||||
}
|
||||
}
|
||||
for (int maxValue : dp){
|
||||
System.out.println(maxValue + " ");
|
||||
}
|
||||
}
|
||||
|
||||
//先遍历背包,再遍历物品
|
||||
private static void testCompletePackAnotherWay(){
|
||||
int[] weight = {1, 3, 4};
|
||||
int[] value = {15, 20, 30};
|
||||
int bagWeight = 4;
|
||||
int[] dp = new int[bagWeight + 1];
|
||||
for (int i = 1; i <= bagWeight; i++){ // 遍历背包容量
|
||||
for (int j = 0; j < weight.length; j++){ // 遍历物品
|
||||
if (i - weight[j] >= 0){
|
||||
dp[i] = Math.max(dp[i], dp[i - weight[j]] + value[j]);
|
||||
}
|
||||
int[][] dp = new int[n][bagWeight + 1];
|
||||
|
||||
// 初始化
|
||||
for (int j = weight[0]; j <= bagWeight; j++) {
|
||||
dp[0][j] = dp[0][j - weight[0]] + value[0];
|
||||
}
|
||||
}
|
||||
for (int maxValue : dp){
|
||||
System.out.println(maxValue + " ");
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
|
||||
### Python:
|
||||
|
||||
先遍历物品,再遍历背包(无参版)
|
||||
```python
|
||||
def test_CompletePack():
|
||||
weight = [1, 3, 4]
|
||||
value = [15, 20, 30]
|
||||
bagWeight = 4
|
||||
dp = [0] * (bagWeight + 1)
|
||||
for i in range(len(weight)): # 遍历物品
|
||||
for j in range(weight[i], bagWeight + 1): # 遍历背包容量
|
||||
dp[j] = max(dp[j], dp[j - weight[i]] + value[i])
|
||||
print(dp[bagWeight])
|
||||
|
||||
test_CompletePack()
|
||||
|
||||
```
|
||||
|
||||
先遍历物品,再遍历背包(有参版)
|
||||
```python
|
||||
def test_CompletePack(weight, value, bagWeight):
|
||||
dp = [0] * (bagWeight + 1)
|
||||
for i in range(len(weight)): # 遍历物品
|
||||
for j in range(weight[i], bagWeight + 1): # 遍历背包容量
|
||||
dp[j] = max(dp[j], dp[j - weight[i]] + value[i])
|
||||
return dp[bagWeight]
|
||||
|
||||
if __name__ == "__main__":
|
||||
weight = [1, 3, 4]
|
||||
value = [15, 20, 30]
|
||||
bagWeight = 4
|
||||
result = test_CompletePack(weight, value, bagWeight)
|
||||
print(result)
|
||||
|
||||
```
|
||||
先遍历背包,再遍历物品(无参版)
|
||||
```python
|
||||
def test_CompletePack():
|
||||
weight = [1, 3, 4]
|
||||
value = [15, 20, 30]
|
||||
bagWeight = 4
|
||||
|
||||
dp = [0] * (bagWeight + 1)
|
||||
|
||||
for j in range(bagWeight + 1): # 遍历背包容量
|
||||
for i in range(len(weight)): # 遍历物品
|
||||
if j - weight[i] >= 0:
|
||||
dp[j] = max(dp[j], dp[j - weight[i]] + value[i])
|
||||
|
||||
print(dp[bagWeight])
|
||||
|
||||
test_CompletePack()
|
||||
|
||||
|
||||
```
|
||||
|
||||
先遍历背包,再遍历物品(有参版)
|
||||
```python
|
||||
def test_CompletePack(weight, value, bagWeight):
|
||||
dp = [0] * (bagWeight + 1)
|
||||
for j in range(bagWeight + 1): # 遍历背包容量
|
||||
for i in range(len(weight)): # 遍历物品
|
||||
if j - weight[i] >= 0:
|
||||
dp[j] = max(dp[j], dp[j - weight[i]] + value[i])
|
||||
return dp[bagWeight]
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
weight = [1, 3, 4]
|
||||
value = [15, 20, 30]
|
||||
bagWeight = 4
|
||||
result = test_CompletePack(weight, value, bagWeight)
|
||||
print(result)
|
||||
|
||||
```
|
||||
|
||||
### Go:
|
||||
|
||||
```go
|
||||
|
||||
// test_CompletePack1 先遍历物品, 在遍历背包
|
||||
func test_CompletePack1(weight, value []int, bagWeight int) int {
|
||||
// 定义dp数组 和初始化
|
||||
dp := make([]int, bagWeight+1)
|
||||
// 遍历顺序
|
||||
for i := 0; i < len(weight); i++ {
|
||||
// 正序会多次添加 value[i]
|
||||
for j := weight[i]; j <= bagWeight; j++ {
|
||||
// 推导公式
|
||||
dp[j] = max(dp[j], dp[j-weight[i]]+value[i])
|
||||
// debug
|
||||
//fmt.Println(dp)
|
||||
}
|
||||
}
|
||||
return dp[bagWeight]
|
||||
}
|
||||
|
||||
// test_CompletePack2 先遍历背包, 在遍历物品
|
||||
func test_CompletePack2(weight, value []int, bagWeight int) int {
|
||||
// 定义dp数组 和初始化
|
||||
dp := make([]int, bagWeight+1)
|
||||
// 遍历顺序
|
||||
// j从0 开始
|
||||
for j := 0; j <= bagWeight; j++ {
|
||||
for i := 0; i < len(weight); i++ {
|
||||
if j >= weight[i] {
|
||||
// 推导公式
|
||||
dp[j] = max(dp[j], dp[j-weight[i]]+value[i])
|
||||
}
|
||||
// debug
|
||||
//fmt.Println(dp)
|
||||
}
|
||||
}
|
||||
return dp[bagWeight]
|
||||
}
|
||||
|
||||
func max(a, b int) int {
|
||||
if a > b {
|
||||
return a
|
||||
}
|
||||
return b
|
||||
}
|
||||
|
||||
func main() {
|
||||
weight := []int{1, 3, 4}
|
||||
price := []int{15, 20, 30}
|
||||
fmt.Println(test_CompletePack1(weight, price, 4))
|
||||
fmt.Println(test_CompletePack2(weight, price, 4))
|
||||
}
|
||||
```
|
||||
### Javascript:
|
||||
|
||||
```Javascript
|
||||
// 先遍历物品,再遍历背包容量
|
||||
function test_completePack1() {
|
||||
let weight = [1, 3, 5]
|
||||
let value = [15, 20, 30]
|
||||
let bagWeight = 4
|
||||
let dp = new Array(bagWeight + 1).fill(0)
|
||||
for(let i = 0; i <= weight.length; i++) {
|
||||
for(let j = weight[i]; j <= bagWeight; j++) {
|
||||
dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i])
|
||||
}
|
||||
}
|
||||
console.log(dp)
|
||||
}
|
||||
|
||||
// 先遍历背包容量,再遍历物品
|
||||
function test_completePack2() {
|
||||
let weight = [1, 3, 5]
|
||||
let value = [15, 20, 30]
|
||||
let bagWeight = 4
|
||||
let dp = new Array(bagWeight + 1).fill(0)
|
||||
for(let j = 0; j <= bagWeight; j++) {
|
||||
for(let i = 0; i < weight.length; i++) {
|
||||
if (j >= weight[i]) {
|
||||
dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i])
|
||||
}
|
||||
}
|
||||
}
|
||||
console.log(2, dp);
|
||||
}
|
||||
```
|
||||
|
||||
### TypeScript:
|
||||
|
||||
```typescript
|
||||
// 先遍历物品,再遍历背包容量
|
||||
function test_CompletePack(): void {
|
||||
const weight: number[] = [1, 3, 4];
|
||||
const value: number[] = [15, 20, 30];
|
||||
const bagSize: number = 4;
|
||||
const dp: number[] = new Array(bagSize + 1).fill(0);
|
||||
for (let i = 0; i < weight.length; i++) {
|
||||
for (let j = weight[i]; j <= bagSize; j++) {
|
||||
dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i]);
|
||||
}
|
||||
}
|
||||
console.log(dp);
|
||||
}
|
||||
test_CompletePack();
|
||||
```
|
||||
|
||||
### Scala:
|
||||
|
||||
```scala
|
||||
// 先遍历物品,再遍历背包容量
|
||||
object Solution {
|
||||
def test_CompletePack() {
|
||||
var weight = Array[Int](1, 3, 4)
|
||||
var value = Array[Int](15, 20, 30)
|
||||
var baseweight = 4
|
||||
|
||||
var dp = new Array[Int](baseweight + 1)
|
||||
|
||||
for (i <- 0 until weight.length) {
|
||||
for (j <- weight(i) to baseweight) {
|
||||
dp(j) = math.max(dp(j), dp(j - weight(i)) + value(i))
|
||||
}
|
||||
}
|
||||
dp(baseweight)
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### Rust:
|
||||
|
||||
```rust
|
||||
impl Solution {
|
||||
// 先遍历物品
|
||||
fn complete_pack() {
|
||||
let (goods, bag_size) = (vec![(1, 15), (3, 20), (4, 30)], 4);
|
||||
let mut dp = vec![0; bag_size + 1];
|
||||
for (weight, value) in goods {
|
||||
for j in weight..=bag_size {
|
||||
dp[j] = dp[j].max(dp[j - weight] + value);
|
||||
}
|
||||
}
|
||||
println!("先遍历物品:{}", dp[bag_size]);
|
||||
}
|
||||
|
||||
// 先遍历背包
|
||||
fn complete_pack_after() {
|
||||
let (goods, bag_size) = (vec![(1, 15), (3, 20), (4, 30)], 4);
|
||||
let mut dp = vec![0; bag_size + 1];
|
||||
for i in 0..=bag_size {
|
||||
for (weight, value) in &goods {
|
||||
if i >= *weight {
|
||||
dp[i] = dp[i].max(dp[i - weight] + value);
|
||||
// 动态规划
|
||||
for (int i = 1; i < n; i++) {
|
||||
for (int j = 0; j <= bagWeight; j++) {
|
||||
if (j < weight[i]) {
|
||||
dp[i][j] = dp[i - 1][j];
|
||||
} else {
|
||||
dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - weight[i]] + value[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
println!("先遍历背包:{}", dp[bag_size]);
|
||||
|
||||
System.out.println(dp[n - 1][bagWeight]);
|
||||
scanner.close();
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_complete_pack() {
|
||||
Solution::complete_pack();
|
||||
Solution::complete_pack_after();
|
||||
}
|
||||
```
|
||||
|
||||
### Go
|
||||
|
||||
### Python
|
||||
|
||||
```python
|
||||
def knapsack(n, bag_weight, weight, value):
|
||||
dp = [[0] * (bag_weight + 1) for _ in range(n)]
|
||||
|
||||
# 初始化
|
||||
for j in range(weight[0], bag_weight + 1):
|
||||
dp[0][j] = dp[0][j - weight[0]] + value[0]
|
||||
|
||||
# 动态规划
|
||||
for i in range(1, n):
|
||||
for j in range(bag_weight + 1):
|
||||
if j < weight[i]:
|
||||
dp[i][j] = dp[i - 1][j]
|
||||
else:
|
||||
dp[i][j] = max(dp[i - 1][j], dp[i][j - weight[i]] + value[i])
|
||||
|
||||
return dp[n - 1][bag_weight]
|
||||
|
||||
# 输入
|
||||
n, bag_weight = map(int, input().split())
|
||||
weight = []
|
||||
value = []
|
||||
for _ in range(n):
|
||||
w, v = map(int, input().split())
|
||||
weight.append(w)
|
||||
value.append(v)
|
||||
|
||||
# 输出结果
|
||||
print(knapsack(n, bag_weight, weight, value))
|
||||
|
||||
```
|
||||
|
||||
### JavaScript
|
||||
|
||||
|
||||
|
||||
<p align="center">
|
||||
<a href="https://programmercarl.com/other/kstar.html" target="_blank">
|
||||
|
Reference in New Issue
Block a user