mirror of
https://github.com/youngyangyang04/leetcode-master.git
synced 2025-07-11 04:54:51 +08:00
@ -256,16 +256,28 @@ public int climbStairs(int n) {
|
||||
### Python
|
||||
|
||||
```python
|
||||
# 空间复杂度为O(n)版本
|
||||
class Solution:
|
||||
def climbStairs(self, n: int) -> int:
|
||||
# dp[i]表示爬到第i级楼梯的种数, (1, 2) (2, 1)是两种不同的类型
|
||||
dp = [0] * (n + 1)
|
||||
dp[0] = 1
|
||||
for i in range(n+1):
|
||||
for j in range(1, 3):
|
||||
if i>=j:
|
||||
dp[i] += dp[i-j]
|
||||
return dp[-1]
|
||||
# dp[i] 为第 i 阶楼梯有多少种方法爬到楼顶
|
||||
dp=[0]*(n+1)
|
||||
dp[0]=1
|
||||
dp[1]=1
|
||||
for i in range(2,n+1):
|
||||
dp[i]=dp[i-1]+dp[i-2]
|
||||
return dp[n]
|
||||
|
||||
# 空间复杂度为O(1)版本
|
||||
class Solution:
|
||||
def climbStairs(self, n: int) -> int:
|
||||
dp=[0]*(n+1)
|
||||
dp[0]=1
|
||||
dp[1]=1
|
||||
for i in range(2,n+1):
|
||||
tmp=dp[0]+dp[1]
|
||||
dp[0]=dp[1]
|
||||
dp[1]=tmp
|
||||
return dp[1]
|
||||
```
|
||||
|
||||
### Go
|
||||
|
@ -123,22 +123,24 @@ Python:
|
||||
```Python
|
||||
class Solution:
|
||||
def rob(self, nums: List[int]) -> int:
|
||||
if (n := len(nums)) == 0:
|
||||
return 0
|
||||
if n == 1:
|
||||
return nums[0]
|
||||
result1 = self.robRange(nums, 0, n - 2)
|
||||
result2 = self.robRange(nums, 1, n - 1)
|
||||
return max(result1 , result2)
|
||||
#在198入门级的打家劫舍问题上分两种情况考虑
|
||||
#一是不偷第一间房,二是不偷最后一间房
|
||||
if len(nums)==1:#题目中提示nums.length>=1,所以不需要考虑len(nums)==0的情况
|
||||
return nums[0]
|
||||
val1=self.roblist(nums[1:])#不偷第一间房
|
||||
val2=self.roblist(nums[:-1])#不偷最后一间房
|
||||
return max(val1,val2)
|
||||
|
||||
def robRange(self, nums: List[int], start: int, end: int) -> int:
|
||||
if end == start: return nums[start]
|
||||
dp = [0] * len(nums)
|
||||
dp[start] = nums[start]
|
||||
dp[start + 1] = max(nums[start], nums[start + 1])
|
||||
for i in range(start + 2, end + 1):
|
||||
dp[i] = max(dp[i -2] + nums[i], dp[i - 1])
|
||||
return dp[end]
|
||||
def robRange(self,nums):
|
||||
l=len(nums)
|
||||
dp=[0]*l
|
||||
dp[0]=nums[0]
|
||||
for i in range(1,l):
|
||||
if i==1:
|
||||
dp[i]=max(dp[i-1],nums[i])
|
||||
else:
|
||||
dp[i]=max(dp[i-1],dp[i-2]+nums[i])
|
||||
return dp[-1]
|
||||
```
|
||||
|
||||
javascipt:
|
||||
|
Reference in New Issue
Block a user