Update 1143.最长公共子序列.md

This commit is contained in:
jianghongcheng
2023-06-07 05:32:55 -05:00
committed by GitHub
parent 8fb1697014
commit 0a742d83a4

View File

@ -198,21 +198,49 @@ class Solution {
```
Python
2维DP
```python
class Solution:
def longestCommonSubsequence(self, text1: str, text2: str) -> int:
len1, len2 = len(text1)+1, len(text2)+1
dp = [[0 for _ in range(len1)] for _ in range(len2)] # 先对dp数组做初始化操作
for i in range(1, len2):
for j in range(1, len1): # 开始列出状态转移方程
if text1[j-1] == text2[i-1]:
dp[i][j] = dp[i-1][j-1]+1
# 创建一个二维数组 dp用于存储最长公共子序列的长度
dp = [[0] * (len(text2) + 1) for _ in range(len(text1) + 1)]
# 遍历 text1 和 text2填充 dp 数组
for i in range(1, len(text1) + 1):
for j in range(1, len(text2) + 1):
if text1[i - 1] == text2[j - 1]:
# 如果 text1[i-1] 和 text2[j-1] 相等,则当前位置的最长公共子序列长度为左上角位置的值加一
dp[i][j] = dp[i - 1][j - 1] + 1
else:
dp[i][j] = max(dp[i-1][j], dp[i][j-1])
return dp[-1][-1]
```
# 如果 text1[i-1] 和 text2[j-1] 不相等,则当前位置的最长公共子序列长度为上方或左方的较大值
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])
# 返回最长公共子序列的长度
return dp[len(text1)][len(text2)]
```
1维DP
```python
class Solution:
def longestCommonSubsequence(self, text1: str, text2: str) -> int:
m, n = len(text1), len(text2)
dp = [0] * (n + 1) # 初始化一维DP数组
for i in range(1, m + 1):
prev = 0 # 保存上一个位置的最长公共子序列长度
for j in range(1, n + 1):
curr = dp[j] # 保存当前位置的最长公共子序列长度
if text1[i - 1] == text2[j - 1]:
# 如果当前字符相等,则最长公共子序列长度加一
dp[j] = prev + 1
else:
# 如果当前字符不相等,则选择保留前一个位置的最长公共子序列长度中的较大值
dp[j] = max(dp[j], dp[j - 1])
prev = curr # 更新上一个位置的最长公共子序列长度
return dp[n] # 返回最后一个位置的最长公共子序列长度作为结果
```
Go
```Go