diff --git a/problems/1143.最长公共子序列.md b/problems/1143.最长公共子序列.md index 730e9ad1..4b712569 100644 --- a/problems/1143.最长公共子序列.md +++ b/problems/1143.最长公共子序列.md @@ -198,21 +198,49 @@ class Solution { ``` Python: - +2维DP ```python class Solution: def longestCommonSubsequence(self, text1: str, text2: str) -> int: - len1, len2 = len(text1)+1, len(text2)+1 - dp = [[0 for _ in range(len1)] for _ in range(len2)] # 先对dp数组做初始化操作 - for i in range(1, len2): - for j in range(1, len1): # 开始列出状态转移方程 - if text1[j-1] == text2[i-1]: - dp[i][j] = dp[i-1][j-1]+1 + # 创建一个二维数组 dp,用于存储最长公共子序列的长度 + dp = [[0] * (len(text2) + 1) for _ in range(len(text1) + 1)] + + # 遍历 text1 和 text2,填充 dp 数组 + for i in range(1, len(text1) + 1): + for j in range(1, len(text2) + 1): + if text1[i - 1] == text2[j - 1]: + # 如果 text1[i-1] 和 text2[j-1] 相等,则当前位置的最长公共子序列长度为左上角位置的值加一 + dp[i][j] = dp[i - 1][j - 1] + 1 else: - dp[i][j] = max(dp[i-1][j], dp[i][j-1]) - return dp[-1][-1] -``` + # 如果 text1[i-1] 和 text2[j-1] 不相等,则当前位置的最长公共子序列长度为上方或左方的较大值 + dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]) + + # 返回最长公共子序列的长度 + return dp[len(text1)][len(text2)] +``` +1维DP +```python +class Solution: + def longestCommonSubsequence(self, text1: str, text2: str) -> int: + m, n = len(text1), len(text2) + dp = [0] * (n + 1) # 初始化一维DP数组 + + for i in range(1, m + 1): + prev = 0 # 保存上一个位置的最长公共子序列长度 + for j in range(1, n + 1): + curr = dp[j] # 保存当前位置的最长公共子序列长度 + if text1[i - 1] == text2[j - 1]: + # 如果当前字符相等,则最长公共子序列长度加一 + dp[j] = prev + 1 + else: + # 如果当前字符不相等,则选择保留前一个位置的最长公共子序列长度中的较大值 + dp[j] = max(dp[j], dp[j - 1]) + prev = curr # 更新上一个位置的最长公共子序列长度 + + return dp[n] # 返回最后一个位置的最长公共子序列长度作为结果 + +``` Go: ```Go