mirror of
https://github.com/halfrost/LeetCode-Go.git
synced 2025-07-29 07:03:22 +08:00
75 lines
1.6 KiB
Markdown
Executable File
75 lines
1.6 KiB
Markdown
Executable File
# [53. Maximum Subarray](https://leetcode.com/problems/maximum-subarray/)
|
||
|
||
|
||
## 题目
|
||
|
||
Given an integer array `nums`, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.
|
||
|
||
**Example**:
|
||
|
||
|
||
Input: [-2,1,-3,4,-1,2,1,-5,4],
|
||
Output: 6
|
||
Explanation: [4,-1,2,1] has the largest sum = 6.
|
||
|
||
|
||
**Follow up**:
|
||
|
||
If you have figured out the O(*n*) solution, try coding another solution using the divide and conquer approach, which is more subtle.
|
||
|
||
## 题目大意
|
||
|
||
给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
|
||
|
||
## 解题思路
|
||
|
||
- 这一题可以用 DP 求解也可以不用 DP。
|
||
- 题目要求输出数组中某个区间内数字之和最大的那个值。`dp[i]` 表示 `[0,i]` 区间内各个子区间和的最大值,状态转移方程是 `dp[i] = nums[i] + dp[i-1] (dp[i-1] > 0)`,`dp[i] = nums[i] (dp[i-1] ≤ 0)`。
|
||
|
||
## 代码
|
||
|
||
```go
|
||
|
||
package leetcode
|
||
|
||
// 解法一 DP
|
||
func maxSubArray(nums []int) int {
|
||
if len(nums) == 0 {
|
||
return 0
|
||
}
|
||
if len(nums) == 1 {
|
||
return nums[0]
|
||
}
|
||
dp, res := make([]int, len(nums)), nums[0]
|
||
dp[0] = nums[0]
|
||
for i := 1; i < len(nums); i++ {
|
||
if dp[i-1] > 0 {
|
||
dp[i] = nums[i] + dp[i-1]
|
||
} else {
|
||
dp[i] = nums[i]
|
||
}
|
||
res = max(res, dp[i])
|
||
}
|
||
return res
|
||
}
|
||
|
||
// 解法二 模拟
|
||
func maxSubArray1(nums []int) int {
|
||
if len(nums) == 1 {
|
||
return nums[0]
|
||
}
|
||
maxSum, res, p := nums[0], 0, 0
|
||
for p < len(nums) {
|
||
res += nums[p]
|
||
if res > maxSum {
|
||
maxSum = res
|
||
}
|
||
if res < 0 {
|
||
res = 0
|
||
}
|
||
p++
|
||
}
|
||
return maxSum
|
||
}
|
||
|
||
``` |