# [53. Maximum Subarray](https://leetcode.com/problems/maximum-subarray/) ## 题目 Given an integer array `nums`, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum. **Example**: Input: [-2,1,-3,4,-1,2,1,-5,4], Output: 6 Explanation: [4,-1,2,1] has the largest sum = 6. **Follow up**: If you have figured out the O(*n*) solution, try coding another solution using the divide and conquer approach, which is more subtle. ## 题目大意 给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。 ## 解题思路 - 这一题可以用 DP 求解也可以不用 DP。 - 题目要求输出数组中某个区间内数字之和最大的那个值。`dp[i]` 表示 `[0,i]` 区间内各个子区间和的最大值,状态转移方程是 `dp[i] = nums[i] + dp[i-1] (dp[i-1] > 0)`,`dp[i] = nums[i] (dp[i-1] ≤ 0)`。 ## 代码 ```go package leetcode // 解法一 DP func maxSubArray(nums []int) int { if len(nums) == 0 { return 0 } if len(nums) == 1 { return nums[0] } dp, res := make([]int, len(nums)), nums[0] dp[0] = nums[0] for i := 1; i < len(nums); i++ { if dp[i-1] > 0 { dp[i] = nums[i] + dp[i-1] } else { dp[i] = nums[i] } res = max(res, dp[i]) } return res } // 解法二 模拟 func maxSubArray1(nums []int) int { if len(nums) == 1 { return nums[0] } maxSum, res, p := nums[0], 0, 0 for p < len(nums) { res += nums[p] if res > maxSum { maxSum = res } if res < 0 { res = 0 } p++ } return maxSum } ```