mirror of
https://github.com/halfrost/LeetCode-Go.git
synced 2025-07-05 00:25:22 +08:00
114 lines
3.5 KiB
Markdown
114 lines
3.5 KiB
Markdown
# [1091. Shortest Path in Binary Matrix](https://leetcode.com/problems/shortest-path-in-binary-matrix/)
|
||
|
||
|
||
## 题目
|
||
|
||
In an N by N square grid, each cell is either empty (0) or blocked (1).
|
||
|
||
A *clear path from top-left to bottom-right* has length `k` if and only if it is composed of cells `C_1, C_2, ..., C_k` such that:
|
||
|
||
- Adjacent cells `C_i` and `C_{i+1}` are connected 8-directionally (ie., they are different and share an edge or corner)
|
||
- `C_1` is at location `(0, 0)` (ie. has value `grid[0][0]`)
|
||
- `C_k` is at location `(N-1, N-1)` (ie. has value `grid[N-1][N-1]`)
|
||
- If `C_i` is located at `(r, c)`, then `grid[r][c]` is empty (ie. `grid[r][c] == 0`).
|
||
|
||
Return the length of the shortest such clear path from top-left to bottom-right. If such a path does not exist, return -1.
|
||
|
||
**Example 1:**
|
||
|
||
```
|
||
Input: [[0,1],[1,0]]
|
||
Output: 2
|
||
```
|
||
|
||

|
||
|
||

|
||
|
||
**Example 2:**
|
||
|
||
```
|
||
Input: [[0,0,0],[1,1,0],[1,1,0]]
|
||
Output: 4
|
||
```
|
||
|
||

|
||
|
||

|
||
|
||
**Note:**
|
||
|
||
1. `1 <= grid.length == grid[0].length <= 100`
|
||
2. `grid[r][c]` is `0` or `1`
|
||
|
||
## 题目大意
|
||
|
||
在一个 N × N 的方形网格中,每个单元格有两种状态:空(0)或者阻塞(1)。一条从左上角到右下角、长度为 k 的畅通路径,由满足下述条件的单元格 C_1, C_2, ..., C_k 组成:
|
||
|
||
- 相邻单元格 C_i 和 C_{i+1} 在八个方向之一上连通(此时,C_i 和 C_{i+1} 不同且共享边或角)
|
||
- C_1 位于 (0, 0)(即,值为 grid[0][0])
|
||
- C_k 位于 (N-1, N-1)(即,值为 grid[N-1][N-1])
|
||
- 如果 C_i 位于 (r, c),则 grid[r][c] 为空(即,grid[r][c] == 0)
|
||
|
||
返回这条从左上角到右下角的最短畅通路径的长度。如果不存在这样的路径,返回 -1 。
|
||
|
||
## 解题思路
|
||
|
||
- 这一题是简单的找最短路径。利用 BFS 从左上角逐步扩展到右下角,便可以很容易求解。注意每轮扩展需要考虑 8 个方向。
|
||
|
||
## 代码
|
||
|
||
```go
|
||
var dir = [][]int{
|
||
{-1, -1},
|
||
{-1, 0},
|
||
{-1, 1},
|
||
{0, 1},
|
||
{0, -1},
|
||
{1, -1},
|
||
{1, 0},
|
||
{1, 1},
|
||
}
|
||
|
||
func shortestPathBinaryMatrix(grid [][]int) int {
|
||
visited := make([][]bool, 0)
|
||
for range make([]int, len(grid)) {
|
||
visited = append(visited, make([]bool, len(grid[0])))
|
||
}
|
||
dis := make([][]int, 0)
|
||
for range make([]int, len(grid)) {
|
||
dis = append(dis, make([]int, len(grid[0])))
|
||
}
|
||
if grid[0][0] == 1 {
|
||
return -1
|
||
}
|
||
if len(grid) == 1 && len(grid[0]) == 1 {
|
||
return 1
|
||
}
|
||
|
||
queue := []int{0}
|
||
visited[0][0], dis[0][0] = true, 1
|
||
for len(queue) > 0 {
|
||
cur := queue[0]
|
||
queue = queue[1:]
|
||
curx, cury := cur/len(grid[0]), cur%len(grid[0])
|
||
for d := 0; d < 8; d++ {
|
||
nextx := curx + dir[d][0]
|
||
nexty := cury + dir[d][1]
|
||
if isInBoard(grid, nextx, nexty) && !visited[nextx][nexty] && grid[nextx][nexty] == 0 {
|
||
queue = append(queue, nextx*len(grid[0])+nexty)
|
||
visited[nextx][nexty] = true
|
||
dis[nextx][nexty] = dis[curx][cury] + 1
|
||
if nextx == len(grid)-1 && nexty == len(grid[0])-1 {
|
||
return dis[nextx][nexty]
|
||
}
|
||
}
|
||
}
|
||
}
|
||
return -1
|
||
}
|
||
|
||
func isInBoard(board [][]int, x, y int) bool {
|
||
return x >= 0 && x < len(board) && y >= 0 && y < len(board[0])
|
||
}
|
||
``` |