# [1091. Shortest Path in Binary Matrix](https://leetcode.com/problems/shortest-path-in-binary-matrix/) ## 题目 In an N by N square grid, each cell is either empty (0) or blocked (1). A *clear path from top-left to bottom-right* has length `k` if and only if it is composed of cells `C_1, C_2, ..., C_k` such that: - Adjacent cells `C_i` and `C_{i+1}` are connected 8-directionally (ie., they are different and share an edge or corner) - `C_1` is at location `(0, 0)` (ie. has value `grid[0][0]`) - `C_k` is at location `(N-1, N-1)` (ie. has value `grid[N-1][N-1]`) - If `C_i` is located at `(r, c)`, then `grid[r][c]` is empty (ie. `grid[r][c] == 0`). Return the length of the shortest such clear path from top-left to bottom-right.  If such a path does not exist, return -1. **Example 1:** ``` Input: [[0,1],[1,0]] Output: 2 ``` ![https://assets.leetcode.com/uploads/2019/08/04/example1_1.png](https://assets.leetcode.com/uploads/2019/08/04/example1_1.png) ![https://assets.leetcode.com/uploads/2019/08/04/example1_2.png](https://assets.leetcode.com/uploads/2019/08/04/example1_2.png) **Example 2:** ``` Input: [[0,0,0],[1,1,0],[1,1,0]] Output: 4 ``` ![https://assets.leetcode.com/uploads/2019/08/04/example2_1.png](https://assets.leetcode.com/uploads/2019/08/04/example2_1.png) ![https://assets.leetcode.com/uploads/2019/08/04/example2_2.png](https://assets.leetcode.com/uploads/2019/08/04/example2_2.png) **Note:** 1. `1 <= grid.length == grid[0].length <= 100` 2. `grid[r][c]` is `0` or `1` ## 题目大意 在一个 N × N 的方形网格中,每个单元格有两种状态:空(0)或者阻塞(1)。一条从左上角到右下角、长度为 k 的畅通路径,由满足下述条件的单元格 C_1, C_2, ..., C_k 组成: - 相邻单元格 C_i 和 C_{i+1} 在八个方向之一上连通(此时,C_i 和 C_{i+1} 不同且共享边或角) - C_1 位于 (0, 0)(即,值为 grid[0][0]) - C_k 位于 (N-1, N-1)(即,值为 grid[N-1][N-1]) - 如果 C_i 位于 (r, c),则 grid[r][c] 为空(即,grid[r][c] == 0) 返回这条从左上角到右下角的最短畅通路径的长度。如果不存在这样的路径,返回 -1 。 ## 解题思路 - 这一题是简单的找最短路径。利用 BFS 从左上角逐步扩展到右下角,便可以很容易求解。注意每轮扩展需要考虑 8 个方向。 ## 代码 ```go var dir = [][]int{ {-1, -1}, {-1, 0}, {-1, 1}, {0, 1}, {0, -1}, {1, -1}, {1, 0}, {1, 1}, } func shortestPathBinaryMatrix(grid [][]int) int { visited := make([][]bool, 0) for range make([]int, len(grid)) { visited = append(visited, make([]bool, len(grid[0]))) } dis := make([][]int, 0) for range make([]int, len(grid)) { dis = append(dis, make([]int, len(grid[0]))) } if grid[0][0] == 1 { return -1 } if len(grid) == 1 && len(grid[0]) == 1 { return 1 } queue := []int{0} visited[0][0], dis[0][0] = true, 1 for len(queue) > 0 { cur := queue[0] queue = queue[1:] curx, cury := cur/len(grid[0]), cur%len(grid[0]) for d := 0; d < 8; d++ { nextx := curx + dir[d][0] nexty := cury + dir[d][1] if isInBoard(grid, nextx, nexty) && !visited[nextx][nexty] && grid[nextx][nexty] == 0 { queue = append(queue, nextx*len(grid[0])+nexty) visited[nextx][nexty] = true dis[nextx][nexty] = dis[curx][cury] + 1 if nextx == len(grid)-1 && nexty == len(grid[0])-1 { return dis[nextx][nexty] } } } } return -1 } func isInBoard(board [][]int, x, y int) bool { return x >= 0 && x < len(board) && y >= 0 && y < len(board[0]) } ```