mirror of
https://github.com/halfrost/LeetCode-Go.git
synced 2025-07-05 08:27:30 +08:00
75 lines
2.8 KiB
Markdown
75 lines
2.8 KiB
Markdown
# [1006. Clumsy Factorial](https://leetcode.com/problems/clumsy-factorial/)
|
||
|
||
|
||
## 题目
|
||
|
||
Normally, the factorial of a positive integer `n` is the product of all positive integers less than or equal to `n`. For example, `factorial(10) = 10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1`.
|
||
|
||
We instead make a *clumsy factorial:* using the integers in decreasing order, we swap out the multiply operations for a fixed rotation of operations: multiply (*), divide (/), add (+) and subtract (-) in this order.
|
||
|
||
For example, `clumsy(10) = 10 * 9 / 8 + 7 - 6 * 5 / 4 + 3 - 2 * 1`. However, these operations are still applied using the usual order of operations of arithmetic: we do all multiplication and division steps before any addition or subtraction steps, and multiplication and division steps are processed left to right.
|
||
|
||
Additionally, the division that we use is *floor division* such that `10 * 9 / 8` equals `11`. This guarantees the result is an integer.
|
||
|
||
`Implement the clumsy` function as defined above: given an integer `N`, it returns the clumsy factorial of `N`.
|
||
|
||
**Example 1:**
|
||
|
||
```
|
||
Input:4
|
||
Output: 7
|
||
Explanation: 7 = 4 * 3 / 2 + 1
|
||
```
|
||
|
||
**Example 2:**
|
||
|
||
```
|
||
Input:10
|
||
Output:12
|
||
Explanation:12 = 10 * 9 / 8 + 7 - 6 * 5 / 4 + 3 - 2 * 1
|
||
```
|
||
|
||
**Note:**
|
||
|
||
1. `1 <= N <= 10000`
|
||
2. `2^31 <= answer <= 2^31 - 1` (The answer is guaranteed to fit within a 32-bit integer.)
|
||
|
||
## 题目大意
|
||
|
||
通常,正整数 n 的阶乘是所有小于或等于 n 的正整数的乘积。例如,factorial(10) = 10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1。相反,我们设计了一个笨阶乘 clumsy:在整数的递减序列中,我们以一个固定顺序的操作符序列来依次替换原有的乘法操作符:乘法(*),除法(/),加法(+)和减法(-)。例如,clumsy(10) = 10 * 9 / 8 + 7 - 6 * 5 / 4 + 3 - 2 * 1。然而,这些运算仍然使用通常的算术运算顺序:我们在任何加、减步骤之前执行所有的乘法和除法步骤,并且按从左到右处理乘法和除法步骤。另外,我们使用的除法是地板除法(floor division),所以 10 * 9 / 8 等于 11。这保证结果是一个整数。实现上面定义的笨函数:给定一个整数 N,它返回 N 的笨阶乘。
|
||
|
||
## 解题思路
|
||
|
||
- 按照题意,由于本题没有括号,所以先乘除后加减。4 个操作一组,先算乘法,再算除法,再算加法,最后算减法。减法也可以看成是加法,只是带负号的加法。
|
||
|
||
## 代码
|
||
|
||
```go
|
||
package leetcode
|
||
|
||
func clumsy(N int) int {
|
||
res, count, tmp, flag := 0, 1, N, true
|
||
for i := N - 1; i > 0; i-- {
|
||
count = count % 4
|
||
switch count {
|
||
case 1:
|
||
tmp = tmp * i
|
||
case 2:
|
||
tmp = tmp / i
|
||
case 3:
|
||
res = res + tmp
|
||
flag = true
|
||
tmp = -1
|
||
res = res + i
|
||
case 0:
|
||
flag = false
|
||
tmp = tmp * (i)
|
||
}
|
||
count++
|
||
}
|
||
if !flag {
|
||
res = res + tmp
|
||
}
|
||
return res
|
||
}
|
||
``` |