# [1006. Clumsy Factorial](https://leetcode.com/problems/clumsy-factorial/) ## 题目 Normally, the factorial of a positive integer `n` is the product of all positive integers less than or equal to `n`.  For example, `factorial(10) = 10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1`. We instead make a *clumsy factorial:* using the integers in decreasing order, we swap out the multiply operations for a fixed rotation of operations: multiply (*), divide (/), add (+) and subtract (-) in this order. For example, `clumsy(10) = 10 * 9 / 8 + 7 - 6 * 5 / 4 + 3 - 2 * 1`.  However, these operations are still applied using the usual order of operations of arithmetic: we do all multiplication and division steps before any addition or subtraction steps, and multiplication and division steps are processed left to right. Additionally, the division that we use is *floor division* such that `10 * 9 / 8` equals `11`.  This guarantees the result is an integer. `Implement the clumsy` function as defined above: given an integer `N`, it returns the clumsy factorial of `N`. **Example 1:** ``` Input:4 Output: 7 Explanation: 7 = 4 * 3 / 2 + 1 ``` **Example 2:** ``` Input:10 Output:12 Explanation:12 = 10 * 9 / 8 + 7 - 6 * 5 / 4 + 3 - 2 * 1 ``` **Note:** 1. `1 <= N <= 10000` 2. `2^31 <= answer <= 2^31 - 1` (The answer is guaranteed to fit within a 32-bit integer.) ## 题目大意 通常,正整数 n 的阶乘是所有小于或等于 n 的正整数的乘积。例如,factorial(10) = 10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1。相反,我们设计了一个笨阶乘 clumsy:在整数的递减序列中,我们以一个固定顺序的操作符序列来依次替换原有的乘法操作符:乘法(*),除法(/),加法(+)和减法(-)。例如,clumsy(10) = 10 * 9 / 8 + 7 - 6 * 5 / 4 + 3 - 2 * 1。然而,这些运算仍然使用通常的算术运算顺序:我们在任何加、减步骤之前执行所有的乘法和除法步骤,并且按从左到右处理乘法和除法步骤。另外,我们使用的除法是地板除法(floor division),所以 10 * 9 / 8 等于 11。这保证结果是一个整数。实现上面定义的笨函数:给定一个整数 N,它返回 N 的笨阶乘。 ## 解题思路 - 按照题意,由于本题没有括号,所以先乘除后加减。4 个操作一组,先算乘法,再算除法,再算加法,最后算减法。减法也可以看成是加法,只是带负号的加法。 ## 代码 ```go package leetcode func clumsy(N int) int { res, count, tmp, flag := 0, 1, N, true for i := N - 1; i > 0; i-- { count = count % 4 switch count { case 1: tmp = tmp * i case 2: tmp = tmp / i case 3: res = res + tmp flag = true tmp = -1 res = res + i case 0: flag = false tmp = tmp * (i) } count++ } if !flag { res = res + tmp } return res } ```