mirror of
https://github.com/halfrost/LeetCode-Go.git
synced 2025-07-05 16:36:41 +08:00
98 lines
3.2 KiB
Markdown
98 lines
3.2 KiB
Markdown
# [519. Random Flip Matrix](https://leetcode.com/problems/random-flip-matrix/)
|
|
|
|
## 题目
|
|
|
|
There is an m x n binary grid matrix with all the values set 0 initially. Design an algorithm to randomly pick an index (i, j) where matrix[i][j] == 0 and flips it to 1. All the indices (i, j) where matrix[i][j] == 0 should be equally likely to be returned.
|
|
|
|
Optimize your algorithm to minimize the number of calls made to the built-in random function of your language and optimize the time and space complexity.
|
|
|
|
Implement the Solution class:
|
|
|
|
- Solution(int m, int n) Initializes the object with the size of the binary matrix m and n.
|
|
- int[] flip() Returns a random index [i, j] of the matrix where matrix[i][j] == 0 and flips it to 1.
|
|
- void reset() Resets all the values of the matrix to be 0.
|
|
|
|
**Example 1**:
|
|
|
|
Input
|
|
["Solution", "flip", "flip", "flip", "reset", "flip"]
|
|
[[3, 1], [], [], [], [], []]
|
|
Output
|
|
[null, [1, 0], [2, 0], [0, 0], null, [2, 0]]
|
|
|
|
Explanation
|
|
Solution solution = new Solution(3, 1);
|
|
solution.flip(); // return [1, 0], [0,0], [1,0], and [2,0] should be equally likely to be returned.
|
|
solution.flip(); // return [2, 0], Since [1,0] was returned, [2,0] and [0,0]
|
|
solution.flip(); // return [0, 0], Based on the previously returned indices, only [0,0] can be returned.
|
|
solution.reset(); // All the values are reset to 0 and can be returned.
|
|
solution.flip(); // return [2, 0], [0,0], [1,0], and [2,0] should be equally likely to be returned.
|
|
|
|
**Constraints:**
|
|
|
|
- 1 <= m, n <= 10000
|
|
- There will be at least one free cell for each call to flip.
|
|
- At most 1000 calls will be made to flip and reset.
|
|
|
|
## 题目大意
|
|
|
|
给你一个 m x n 的二元矩阵 matrix ,且所有值被初始化为 0 。请你设计一个算法,随机选取一个满足 matrix[i][j] == 0 的下标 (i, j) ,并将它的值变为 1 。所有满足 matrix[i][j] == 0 的下标 (i, j) 被选取的概率应当均等。
|
|
|
|
尽量最少调用内置的随机函数,并且优化时间和空间复杂度。
|
|
|
|
实现 Solution 类:
|
|
|
|
- Solution(int m, int n) 使用二元矩阵的大小 m 和 n 初始化该对象
|
|
- int[] flip() 返回一个满足 matrix[i][j] == 0 的随机下标 [i, j] ,并将其对应格子中的值变为 1
|
|
- void reset() 将矩阵中所有的值重置为 0
|
|
|
|
## 解题思路
|
|
|
|
- 二维矩阵利用哈希表转换为一维,每次随机选择一维中的任意一个元素,然后与最后一个元素交换,一维元素的总个数减一
|
|
- 哈希表中默认的映射为x->x, 然后将不满足这个映射的特殊键值对存入哈希表
|
|
|
|
## 代码
|
|
|
|
```go
|
|
package leetcode
|
|
|
|
import "math/rand"
|
|
|
|
type Solution struct {
|
|
r int
|
|
c int
|
|
total int
|
|
mp map[int]int
|
|
}
|
|
|
|
func Constructor(m int, n int) Solution {
|
|
return Solution{
|
|
r: m,
|
|
c: n,
|
|
total: m * n,
|
|
mp: map[int]int{},
|
|
}
|
|
}
|
|
|
|
func (this *Solution) Flip() []int {
|
|
k := rand.Intn(this.total)
|
|
val := k
|
|
if v, ok := this.mp[k]; ok {
|
|
val = v
|
|
}
|
|
if _, ok := this.mp[this.total-1]; ok {
|
|
this.mp[k] = this.mp[this.total-1]
|
|
} else {
|
|
this.mp[k] = this.total - 1
|
|
}
|
|
delete(this.mp, this.total - 1)
|
|
this.total--
|
|
newR, newC := val/this.c, val%this.c
|
|
return []int{newR, newC}
|
|
}
|
|
|
|
func (this *Solution) Reset() {
|
|
this.total = this.r * this.c
|
|
this.mp = map[int]int{}
|
|
}
|
|
``` |