mirror of
https://github.com/halfrost/LeetCode-Go.git
synced 2025-07-04 16:12:47 +08:00
Merge pull request #231 from coder-xiaomo/patch-2
Update Time_Complexity.md
This commit is contained in:
@ -34,8 +34,8 @@ weight: 3
|
||||
|
||||
```c
|
||||
void hello (int n){
|
||||
for( int sz = 1 ; sz < n ; sz += sz)
|
||||
for( int i = 1 ; i < n ; i ++)
|
||||
for( int sz = 1 ; sz < n ; sz += sz )
|
||||
for( int i = 1 ; i < n ; i ++ )
|
||||
cout << "Hello" << endl;
|
||||
}
|
||||
```
|
||||
@ -45,7 +45,7 @@ void hello (int n){
|
||||
```c
|
||||
bool isPrime (int n){
|
||||
for( int x = 2 ; x * x <= n ; x ++ )
|
||||
if( n % x == 0)
|
||||
if( n % x == 0 )
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
@ -67,7 +67,7 @@ bool isPrime (int n){
|
||||
int sum( int n ){
|
||||
assert( n >= 0 )
|
||||
int ret = 0;
|
||||
for ( int i = 0 ; i <= n ; i++)
|
||||
for ( int i = 0 ; i <= n ; i ++ )
|
||||
ret += i;
|
||||
return ret;
|
||||
}
|
||||
@ -80,7 +80,7 @@ int sum( int n ){
|
||||
assert( n >= 0 )
|
||||
if ( n == 0 )
|
||||
return 0;
|
||||
return n + sum( n - 1);
|
||||
return n + sum( n - 1 );
|
||||
}
|
||||
```
|
||||
|
||||
@ -96,14 +96,14 @@ int sum( int n ){
|
||||
|
||||
```c
|
||||
int binarySearch(int arr[], int l, int r, int target){
|
||||
if( l > r)
|
||||
if( l > r )
|
||||
return -1;
|
||||
int mid = l + (r-l)/2;//防溢出
|
||||
int mid = l + ( r - l ) / 2; // 防溢出
|
||||
if(arr[mid] == target)
|
||||
return mid;
|
||||
else if (arr[mid]>target)
|
||||
else if (arr[mid] > target)
|
||||
return binarySearch(arr,l,mid-1,target);
|
||||
eles
|
||||
else
|
||||
return binarySearch(arr,mid+1,r,target);
|
||||
}
|
||||
|
||||
@ -119,16 +119,16 @@ int binarySearch(int arr[], int l, int r, int target){
|
||||
```c
|
||||
int f(int n){
|
||||
assert( n >= 0 );
|
||||
if( n ==0 )
|
||||
if( n == 0 )
|
||||
return 1;
|
||||
return f( n - 1 ) + f ( n - 1 );
|
||||
|
||||
}
|
||||
```
|
||||
|
||||
上述这次递归调用的次数为 2^0^ + 2^1^ + 2^2^ + …… + 2^n^ = 2^n+1^ - 1 = O(2^n)
|
||||
|
||||
|
||||
> 关于更加复杂的递归的复杂度分析,请参考,主定理。主定理中针对各种复杂情况都给出了正确的结论。
|
||||
> 关于更加复杂的递归的复杂度分析,请参考主定理。主定理中针对各种复杂情况都给出了正确的结论。
|
||||
|
||||
|
||||
----------------------------------------------
|
||||
|
Reference in New Issue
Block a user