Fix ConvexHull to return points in counter-clockwise order (#6810)

* Fix ConvexHull to return points in counter-clockwise order

- Add sortCounterClockwise method to ensure CCW ordering
- Start from bottom-most, left-most point for deterministic results
- Fix issue where unordered HashSet broke downstream algorithms
- Add comprehensive tests with CCW order verification

* test(geometry): Achieve 100% test coverage for ConvexHull
This commit is contained in:
Indole Yi
2025-10-20 02:17:19 +08:00
committed by GitHub
parent 4a97258189
commit d5289b92da
2 changed files with 197 additions and 9 deletions

View File

@@ -61,11 +61,24 @@ public final class ConvexHull {
return new ArrayList<>(convexSet);
}
/**
* Computes the convex hull using a recursive divide-and-conquer approach.
* Returns points in counter-clockwise order starting from the bottom-most, left-most point.
*
* @param points the input points
* @return the convex hull points in counter-clockwise order
*/
public static List<Point> convexHullRecursive(List<Point> points) {
if (points.size() < 3) {
List<Point> result = new ArrayList<>(points);
Collections.sort(result);
return result;
}
Collections.sort(points);
Set<Point> convexSet = new HashSet<>();
Point leftMostPoint = points.get(0);
Point rightMostPoint = points.get(points.size() - 1);
Point leftMostPoint = points.getFirst();
Point rightMostPoint = points.getLast();
convexSet.add(leftMostPoint);
convexSet.add(rightMostPoint);
@@ -85,9 +98,8 @@ public final class ConvexHull {
constructHull(upperHull, leftMostPoint, rightMostPoint, convexSet);
constructHull(lowerHull, rightMostPoint, leftMostPoint, convexSet);
List<Point> result = new ArrayList<>(convexSet);
Collections.sort(result);
return result;
// Convert to list and sort in counter-clockwise order
return sortCounterClockwise(new ArrayList<>(convexSet));
}
private static void constructHull(Collection<Point> points, Point left, Point right, Set<Point> convexSet) {
@@ -114,4 +126,82 @@ public final class ConvexHull {
}
}
}
/**
* Sorts convex hull points in counter-clockwise order starting from
* the bottom-most, left-most point.
*
* @param hullPoints the unsorted convex hull points
* @return the points sorted in counter-clockwise order
*/
private static List<Point> sortCounterClockwise(List<Point> hullPoints) {
if (hullPoints.size() <= 2) {
Collections.sort(hullPoints);
return hullPoints;
}
// Find the bottom-most, left-most point (pivot)
Point pivot = hullPoints.getFirst();
for (Point p : hullPoints) {
if (p.y() < pivot.y() || (p.y() == pivot.y() && p.x() < pivot.x())) {
pivot = p;
}
}
// Sort other points by polar angle with respect to pivot
final Point finalPivot = pivot;
List<Point> sorted = new ArrayList<>(hullPoints);
sorted.remove(finalPivot);
sorted.sort((p1, p2) -> {
int crossProduct = Point.orientation(finalPivot, p1, p2);
if (crossProduct == 0) {
// Collinear points: sort by distance from pivot (closer first for convex hull)
long dist1 = distanceSquared(finalPivot, p1);
long dist2 = distanceSquared(finalPivot, p2);
return Long.compare(dist1, dist2);
}
// Positive cross product means p2 is counter-clockwise from p1
// We want counter-clockwise order, so if p2 is CCW from p1, p1 should come first
return -crossProduct;
});
// Build result with pivot first, filtering out intermediate collinear points
List<Point> result = new ArrayList<>();
result.add(finalPivot);
if (!sorted.isEmpty()) {
// This loop iterates through the points sorted by angle.
// For points that are collinear with the pivot, we only want the one that is farthest away.
// The sort places closer points first.
for (int i = 0; i < sorted.size() - 1; i++) {
// Check the orientation of the pivot, the current point, and the next point.
int orientation = Point.orientation(finalPivot, sorted.get(i), sorted.get(i + 1));
// If the orientation is not 0, it means the next point (i+1) is at a new angle.
// Therefore, the current point (i) must be the farthest point at its angle. We keep it.
if (orientation != 0) {
result.add(sorted.get(i));
}
// If the orientation is 0, the points are collinear. We discard the current point (i)
// because it is closer to the pivot than the next point (i+1).
}
// Always add the very last point from the sorted list. It is either the only point
// at its angle, or it's the farthest among a set of collinear points.
result.add(sorted.getLast());
}
return result;
}
/**
* Computes the squared distance between two points to avoid floating point operations.
*/
private static long distanceSquared(Point p1, Point p2) {
long dx = (long) p1.x() - p2.x();
long dy = (long) p1.y() - p2.y();
return dx * dx + dy * dy;
}
}

View File

@@ -1,7 +1,9 @@
package com.thealgorithms.geometry;
import static org.junit.jupiter.api.Assertions.assertEquals;
import static org.junit.jupiter.api.Assertions.assertTrue;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import org.junit.jupiter.api.Test;
@@ -10,14 +12,17 @@ public class ConvexHullTest {
@Test
void testConvexHullBruteForce() {
// Test 1: Triangle with intermediate point
List<Point> points = Arrays.asList(new Point(0, 0), new Point(1, 0), new Point(10, 1));
List<Point> expected = Arrays.asList(new Point(0, 0), new Point(1, 0), new Point(10, 1));
assertEquals(expected, ConvexHull.convexHullBruteForce(points));
// Test 2: Collinear points
points = Arrays.asList(new Point(0, 0), new Point(1, 0), new Point(10, 0));
expected = Arrays.asList(new Point(0, 0), new Point(10, 0));
assertEquals(expected, ConvexHull.convexHullBruteForce(points));
// Test 3: Complex polygon
points = Arrays.asList(new Point(0, 3), new Point(2, 2), new Point(1, 1), new Point(2, 1), new Point(3, 0), new Point(0, 0), new Point(3, 3), new Point(2, -1), new Point(2, -4), new Point(1, -3));
expected = Arrays.asList(new Point(2, -4), new Point(1, -3), new Point(0, 0), new Point(3, 0), new Point(0, 3), new Point(3, 3));
assertEquals(expected, ConvexHull.convexHullBruteForce(points));
@@ -25,16 +30,109 @@ public class ConvexHullTest {
@Test
void testConvexHullRecursive() {
// Test 1: Triangle - CCW order starting from bottom-left
// The algorithm includes (1,0) as it's detected as an extreme point
List<Point> points = Arrays.asList(new Point(0, 0), new Point(1, 0), new Point(10, 1));
List<Point> result = ConvexHull.convexHullRecursive(points);
List<Point> expected = Arrays.asList(new Point(0, 0), new Point(1, 0), new Point(10, 1));
assertEquals(expected, ConvexHull.convexHullRecursive(points));
assertEquals(expected, result);
assertTrue(isCounterClockwise(result), "Points should be in counter-clockwise order");
// Test 2: Collinear points
points = Arrays.asList(new Point(0, 0), new Point(1, 0), new Point(10, 0));
result = ConvexHull.convexHullRecursive(points);
expected = Arrays.asList(new Point(0, 0), new Point(10, 0));
assertEquals(expected, ConvexHull.convexHullRecursive(points));
assertEquals(expected, result);
// Test 3: Complex polygon
// Convex hull vertices in CCW order from bottom-most point (2,-4):
// (2,-4) -> (3,0) -> (3,3) -> (0,3) -> (0,0) -> (1,-3) -> back to (2,-4)
points = Arrays.asList(new Point(0, 3), new Point(2, 2), new Point(1, 1), new Point(2, 1), new Point(3, 0), new Point(0, 0), new Point(3, 3), new Point(2, -1), new Point(2, -4), new Point(1, -3));
expected = Arrays.asList(new Point(2, -4), new Point(1, -3), new Point(0, 0), new Point(3, 0), new Point(0, 3), new Point(3, 3));
assertEquals(expected, ConvexHull.convexHullRecursive(points));
result = ConvexHull.convexHullRecursive(points);
expected = Arrays.asList(new Point(2, -4), new Point(3, 0), new Point(3, 3), new Point(0, 3), new Point(0, 0), new Point(1, -3));
assertEquals(expected, result);
assertTrue(isCounterClockwise(result), "Points should be in counter-clockwise order");
}
@Test
void testConvexHullRecursiveAdditionalCases() {
// Test 4: Square (all corners on hull)
List<Point> points = Arrays.asList(new Point(0, 0), new Point(2, 0), new Point(2, 2), new Point(0, 2));
List<Point> result = ConvexHull.convexHullRecursive(points);
List<Point> expected = Arrays.asList(new Point(0, 0), new Point(2, 0), new Point(2, 2), new Point(0, 2));
assertEquals(expected, result);
assertTrue(isCounterClockwise(result), "Square points should be in CCW order");
// Test 5: Pentagon with interior point
points = Arrays.asList(new Point(0, 0), new Point(4, 0), new Point(5, 3), new Point(2, 5), new Point(-1, 3), new Point(2, 2) // (2,2) is interior
);
result = ConvexHull.convexHullRecursive(points);
// CCW from (0,0): (0,0) -> (4,0) -> (5,3) -> (2,5) -> (-1,3)
expected = Arrays.asList(new Point(0, 0), new Point(4, 0), new Point(5, 3), new Point(2, 5), new Point(-1, 3));
assertEquals(expected, result);
assertTrue(isCounterClockwise(result), "Pentagon points should be in CCW order");
// Test 6: Simple triangle (clearly convex)
points = Arrays.asList(new Point(0, 0), new Point(4, 0), new Point(2, 3));
result = ConvexHull.convexHullRecursive(points);
expected = Arrays.asList(new Point(0, 0), new Point(4, 0), new Point(2, 3));
assertEquals(expected, result);
assertTrue(isCounterClockwise(result), "Triangle points should be in CCW order");
}
/**
* Helper method to verify if points are in counter-clockwise order.
* Uses the signed area method: positive area means CCW.
*/
private boolean isCounterClockwise(List<Point> points) {
if (points.size() < 3) {
return true; // Less than 3 points, trivially true
}
long signedArea = 0;
for (int i = 0; i < points.size(); i++) {
Point p1 = points.get(i);
Point p2 = points.get((i + 1) % points.size());
signedArea += (long) p1.x() * p2.y() - (long) p2.x() * p1.y();
}
return signedArea > 0; // Positive signed area means counter-clockwise
}
@Test
void testRecursiveHullForCoverage() {
// 1. Test the base cases of the convexHullRecursive method (covering scenarios with < 3 input points).
// Test Case: 0 points
List<Point> pointsEmpty = new ArrayList<>();
List<Point> resultEmpty = ConvexHull.convexHullRecursive(pointsEmpty);
assertTrue(resultEmpty.isEmpty(), "Should return an empty list for an empty input list");
// Test Case: 1 point
List<Point> pointsOne = List.of(new Point(5, 5));
// Pass a new ArrayList because the original method modifies the input list.
List<Point> resultOne = ConvexHull.convexHullRecursive(new ArrayList<>(pointsOne));
List<Point> expectedOne = List.of(new Point(5, 5));
assertEquals(expectedOne, resultOne, "Should return the single point for a single-point input");
// Test Case: 2 points
List<Point> pointsTwo = Arrays.asList(new Point(10, 1), new Point(0, 0));
List<Point> resultTwo = ConvexHull.convexHullRecursive(new ArrayList<>(pointsTwo));
List<Point> expectedTwo = Arrays.asList(new Point(0, 0), new Point(10, 1)); // Should return the two points, sorted.
assertEquals(expectedTwo, resultTwo, "Should return the two sorted points for a two-point input");
// 2. Test the logic for handling collinear points in the sortCounterClockwise method.
// Construct a scenario where multiple collinear points lie on an edge of the convex hull.
// The expected convex hull vertices are (0,0), (10,0), and (5,5).
// When (0,0) is used as the pivot for polar angle sorting, (5,0) and (10,0) are collinear.
// This will trigger the crossProduct == 0 branch in the sortCounterClockwise method.
List<Point> pointsWithCollinearOnHull = Arrays.asList(new Point(0, 0), new Point(5, 0), new Point(10, 0), new Point(5, 5), new Point(2, 2));
List<Point> resultCollinear = ConvexHull.convexHullRecursive(new ArrayList<>(pointsWithCollinearOnHull));
List<Point> expectedCollinear = Arrays.asList(new Point(0, 0), new Point(10, 0), new Point(5, 5));
assertEquals(expectedCollinear, resultCollinear, "Should correctly handle collinear points on the hull edge");
assertTrue(isCounterClockwise(resultCollinear), "The result of the collinear test should be in counter-clockwise order");
}
}