mirror of
https://github.com/open-telemetry/opentelemetry-python-contrib.git
synced 2025-07-31 14:11:50 +08:00
Merge branch 'master' into flask-custom-span
This commit is contained in:
2
.github/workflows/test.yml
vendored
2
.github/workflows/test.yml
vendored
@ -22,7 +22,7 @@ jobs:
|
||||
fail-fast: false # ensures the entire test matrix is run, even if one permutation fails
|
||||
matrix:
|
||||
python-version: [ py35, py36, py37, py38, pypy3 ]
|
||||
package: ["instrumentation", "exporter"]
|
||||
package: ["instrumentation", "exporter", "sdkextension"]
|
||||
os: [ ubuntu-latest ]
|
||||
include:
|
||||
# py35-instrumentation segfaults on 18.04 so we instead run on 20.04
|
||||
|
@ -8,3 +8,7 @@ sphinx-rtd-theme~=0.4
|
||||
sphinx-autodoc-typehints~=1.10.2
|
||||
pytest!=5.2.3
|
||||
pytest-cov>=2.8
|
||||
readme-renderer~=24.0
|
||||
grpcio-tools==1.29.0
|
||||
mypy-protobuf>=1.23
|
||||
protobuf>=3.13.0
|
||||
|
@ -199,7 +199,11 @@ class TestAiopgIntegration(TestBase):
|
||||
"user": "user",
|
||||
}
|
||||
db_integration = AiopgIntegration(
|
||||
self.tracer, "testcomponent", "testtype", connection_attributes
|
||||
self.tracer,
|
||||
"testcomponent",
|
||||
"testtype",
|
||||
connection_attributes,
|
||||
capture_parameters=True,
|
||||
)
|
||||
mock_connection = async_call(
|
||||
db_integration.wrapped_connection(
|
||||
|
@ -2,6 +2,9 @@
|
||||
|
||||
## Unreleased
|
||||
|
||||
Stop capturing query parameters by default
|
||||
([#156](https://github.com/open-telemetry/opentelemetry-python-contrib/pull/156))
|
||||
|
||||
## Version 0.13b0
|
||||
|
||||
Released 2020-09-17
|
||||
|
@ -62,6 +62,7 @@ def trace_integration(
|
||||
database_type: str = "",
|
||||
connection_attributes: typing.Dict = None,
|
||||
tracer_provider: typing.Optional[TracerProvider] = None,
|
||||
capture_parameters: bool = False,
|
||||
):
|
||||
"""Integrate with DB API library.
|
||||
https://www.python.org/dev/peps/pep-0249/
|
||||
@ -76,6 +77,7 @@ def trace_integration(
|
||||
user in Connection object.
|
||||
tracer_provider: The :class:`opentelemetry.trace.TracerProvider` to
|
||||
use. If ommited the current configured one is used.
|
||||
capture_parameters: Configure if db.statement.parameters should be captured.
|
||||
"""
|
||||
wrap_connect(
|
||||
__name__,
|
||||
@ -86,6 +88,7 @@ def trace_integration(
|
||||
connection_attributes,
|
||||
version=__version__,
|
||||
tracer_provider=tracer_provider,
|
||||
capture_parameters=capture_parameters,
|
||||
)
|
||||
|
||||
|
||||
@ -98,6 +101,7 @@ def wrap_connect(
|
||||
connection_attributes: typing.Dict = None,
|
||||
version: str = "",
|
||||
tracer_provider: typing.Optional[TracerProvider] = None,
|
||||
capture_parameters: bool = False,
|
||||
):
|
||||
"""Integrate with DB API library.
|
||||
https://www.python.org/dev/peps/pep-0249/
|
||||
@ -111,6 +115,8 @@ def wrap_connect(
|
||||
database_type: The Database type. For any SQL database, "sql".
|
||||
connection_attributes: Attribute names for database, port, host and
|
||||
user in Connection object.
|
||||
capture_parameters: Configure if db.statement.parameters should be captured.
|
||||
|
||||
"""
|
||||
|
||||
# pylint: disable=unused-argument
|
||||
@ -127,6 +133,7 @@ def wrap_connect(
|
||||
connection_attributes=connection_attributes,
|
||||
version=version,
|
||||
tracer_provider=tracer_provider,
|
||||
capture_parameters=capture_parameters,
|
||||
)
|
||||
return db_integration.wrapped_connection(wrapped, args, kwargs)
|
||||
|
||||
@ -159,6 +166,7 @@ def instrument_connection(
|
||||
connection_attributes: typing.Dict = None,
|
||||
version: str = "",
|
||||
tracer_provider: typing.Optional[TracerProvider] = None,
|
||||
capture_parameters=False,
|
||||
):
|
||||
"""Enable instrumentation in a database connection.
|
||||
|
||||
@ -170,7 +178,7 @@ def instrument_connection(
|
||||
database_type: The Database type. For any SQL database, "sql".
|
||||
connection_attributes: Attribute names for database, port, host and
|
||||
user in a connection object.
|
||||
|
||||
capture_parameters: Configure if db.statement.parameters should be captured.
|
||||
Returns:
|
||||
An instrumented connection.
|
||||
"""
|
||||
@ -181,6 +189,7 @@ def instrument_connection(
|
||||
connection_attributes=connection_attributes,
|
||||
version=version,
|
||||
tracer_provider=tracer_provider,
|
||||
capture_parameters=capture_parameters,
|
||||
)
|
||||
db_integration.get_connection_attributes(connection)
|
||||
return get_traced_connection_proxy(connection, db_integration)
|
||||
@ -211,6 +220,7 @@ class DatabaseApiIntegration:
|
||||
connection_attributes=None,
|
||||
version: str = "",
|
||||
tracer_provider: typing.Optional[TracerProvider] = None,
|
||||
capture_parameters: bool = False,
|
||||
):
|
||||
self.connection_attributes = connection_attributes
|
||||
if self.connection_attributes is None:
|
||||
@ -223,6 +233,7 @@ class DatabaseApiIntegration:
|
||||
self._name = name
|
||||
self._version = version
|
||||
self._tracer_provider = tracer_provider
|
||||
self.capture_parameters = capture_parameters
|
||||
self.database_component = database_component
|
||||
self.database_type = database_type
|
||||
self.connection_props = {}
|
||||
@ -327,7 +338,7 @@ class TracedCursor:
|
||||
) in self._db_api_integration.span_attributes.items():
|
||||
span.set_attribute(attribute_key, attribute_value)
|
||||
|
||||
if len(args) > 1:
|
||||
if self._db_api_integration.capture_parameters and len(args) > 1:
|
||||
span.set_attribute("db.statement.parameters", str(args[1]))
|
||||
|
||||
def traced_execution(
|
||||
|
@ -53,6 +53,49 @@ class TestDBApiIntegration(TestBase):
|
||||
self.assertEqual(span.name, "testcomponent.testdatabase")
|
||||
self.assertIs(span.kind, trace_api.SpanKind.CLIENT)
|
||||
|
||||
self.assertEqual(span.attributes["component"], "testcomponent")
|
||||
self.assertEqual(span.attributes["db.type"], "testtype")
|
||||
self.assertEqual(span.attributes["db.instance"], "testdatabase")
|
||||
self.assertEqual(span.attributes["db.statement"], "Test query")
|
||||
self.assertFalse("db.statement.parameters" in span.attributes)
|
||||
self.assertEqual(span.attributes["db.user"], "testuser")
|
||||
self.assertEqual(span.attributes["net.peer.name"], "testhost")
|
||||
self.assertEqual(span.attributes["net.peer.port"], 123)
|
||||
self.assertIs(
|
||||
span.status.status_code, trace_api.status.StatusCode.UNSET,
|
||||
)
|
||||
|
||||
def test_span_succeeded_with_capture_of_statement_parameters(self):
|
||||
connection_props = {
|
||||
"database": "testdatabase",
|
||||
"server_host": "testhost",
|
||||
"server_port": 123,
|
||||
"user": "testuser",
|
||||
}
|
||||
connection_attributes = {
|
||||
"database": "database",
|
||||
"port": "server_port",
|
||||
"host": "server_host",
|
||||
"user": "user",
|
||||
}
|
||||
db_integration = dbapi.DatabaseApiIntegration(
|
||||
self.tracer,
|
||||
"testcomponent",
|
||||
"testtype",
|
||||
connection_attributes,
|
||||
capture_parameters=True,
|
||||
)
|
||||
mock_connection = db_integration.wrapped_connection(
|
||||
mock_connect, {}, connection_props
|
||||
)
|
||||
cursor = mock_connection.cursor()
|
||||
cursor.execute("Test query", ("param1Value", False))
|
||||
spans_list = self.memory_exporter.get_finished_spans()
|
||||
self.assertEqual(len(spans_list), 1)
|
||||
span = spans_list[0]
|
||||
self.assertEqual(span.name, "testcomponent.testdatabase")
|
||||
self.assertIs(span.kind, trace_api.SpanKind.CLIENT)
|
||||
|
||||
self.assertEqual(span.attributes["component"], "testcomponent")
|
||||
self.assertEqual(span.attributes["db.type"], "testtype")
|
||||
self.assertEqual(span.attributes["db.instance"], "testdatabase")
|
||||
|
@ -22,14 +22,14 @@ Usage
|
||||
.. code-block:: python
|
||||
|
||||
from opentelemetry import trace
|
||||
from opentelemetry.instrumentation.elasticsearch import ElasticSearchInstrumentor
|
||||
from opentelemetry.instrumentation.elasticsearch import ElasticsearchInstrumentor
|
||||
from opentelemetry.sdk.trace import TracerProvider
|
||||
import elasticsearch
|
||||
|
||||
trace.set_tracer_provider(TracerProvider())
|
||||
|
||||
# instrument elasticsearch
|
||||
ElasticSearchInstrumentor().instrument(tracer_provider=trace.get_tracer_provider())
|
||||
ElasticsearchInstrumentor().instrument(tracer_provider=trace.get_tracer_provider())
|
||||
|
||||
# Using elasticsearch as normal now will automatically generate spans
|
||||
es = elasticsearch.Elasticsearch()
|
||||
|
@ -2,6 +2,9 @@
|
||||
|
||||
## Unreleased
|
||||
|
||||
- Update protobuf versions
|
||||
([#1356](https://github.com/open-telemetry/opentelemetry-python/pull/1356))
|
||||
|
||||
## Version 0.15b0
|
||||
|
||||
Released 2020-11-02
|
||||
|
@ -47,7 +47,7 @@ install_requires =
|
||||
test =
|
||||
opentelemetry-test == 0.16.dev0
|
||||
opentelemetry-sdk == 0.16.dev0
|
||||
protobuf == 3.12.2
|
||||
protobuf >= 3.13.0
|
||||
|
||||
[options.packages.find]
|
||||
where = src
|
||||
|
@ -52,7 +52,6 @@ from opentelemetry.instrumentation.instrumentor import BaseInstrumentor
|
||||
from opentelemetry.instrumentation.jinja2.version import __version__
|
||||
from opentelemetry.instrumentation.utils import unwrap
|
||||
from opentelemetry.trace import SpanKind, get_tracer
|
||||
from opentelemetry.trace.status import Status, StatusCode
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
@ -0,0 +1,5 @@
|
||||
# Changelog
|
||||
|
||||
## Unreleased
|
||||
|
||||
- Initial release ([#151](https://github.com/open-telemetry/opentelemetry-python-contrib/pull/151))
|
201
instrumentation/opentelemetry-instrumentation-sklearn/LICENSE
Normal file
201
instrumentation/opentelemetry-instrumentation-sklearn/LICENSE
Normal file
@ -0,0 +1,201 @@
|
||||
Apache License
|
||||
Version 2.0, January 2004
|
||||
http://www.apache.org/licenses/
|
||||
|
||||
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
||||
|
||||
1. Definitions.
|
||||
|
||||
"License" shall mean the terms and conditions for use, reproduction,
|
||||
and distribution as defined by Sections 1 through 9 of this document.
|
||||
|
||||
"Licensor" shall mean the copyright owner or entity authorized by
|
||||
the copyright owner that is granting the License.
|
||||
|
||||
"Legal Entity" shall mean the union of the acting entity and all
|
||||
other entities that control, are controlled by, or are under common
|
||||
control with that entity. For the purposes of this definition,
|
||||
"control" means (i) the power, direct or indirect, to cause the
|
||||
direction or management of such entity, whether by contract or
|
||||
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
||||
outstanding shares, or (iii) beneficial ownership of such entity.
|
||||
|
||||
"You" (or "Your") shall mean an individual or Legal Entity
|
||||
exercising permissions granted by this License.
|
||||
|
||||
"Source" form shall mean the preferred form for making modifications,
|
||||
including but not limited to software source code, documentation
|
||||
source, and configuration files.
|
||||
|
||||
"Object" form shall mean any form resulting from mechanical
|
||||
transformation or translation of a Source form, including but
|
||||
not limited to compiled object code, generated documentation,
|
||||
and conversions to other media types.
|
||||
|
||||
"Work" shall mean the work of authorship, whether in Source or
|
||||
Object form, made available under the License, as indicated by a
|
||||
copyright notice that is included in or attached to the work
|
||||
(an example is provided in the Appendix below).
|
||||
|
||||
"Derivative Works" shall mean any work, whether in Source or Object
|
||||
form, that is based on (or derived from) the Work and for which the
|
||||
editorial revisions, annotations, elaborations, or other modifications
|
||||
represent, as a whole, an original work of authorship. For the purposes
|
||||
of this License, Derivative Works shall not include works that remain
|
||||
separable from, or merely link (or bind by name) to the interfaces of,
|
||||
the Work and Derivative Works thereof.
|
||||
|
||||
"Contribution" shall mean any work of authorship, including
|
||||
the original version of the Work and any modifications or additions
|
||||
to that Work or Derivative Works thereof, that is intentionally
|
||||
submitted to Licensor for inclusion in the Work by the copyright owner
|
||||
or by an individual or Legal Entity authorized to submit on behalf of
|
||||
the copyright owner. For the purposes of this definition, "submitted"
|
||||
means any form of electronic, verbal, or written communication sent
|
||||
to the Licensor or its representatives, including but not limited to
|
||||
communication on electronic mailing lists, source code control systems,
|
||||
and issue tracking systems that are managed by, or on behalf of, the
|
||||
Licensor for the purpose of discussing and improving the Work, but
|
||||
excluding communication that is conspicuously marked or otherwise
|
||||
designated in writing by the copyright owner as "Not a Contribution."
|
||||
|
||||
"Contributor" shall mean Licensor and any individual or Legal Entity
|
||||
on behalf of whom a Contribution has been received by Licensor and
|
||||
subsequently incorporated within the Work.
|
||||
|
||||
2. Grant of Copyright License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
copyright license to reproduce, prepare Derivative Works of,
|
||||
publicly display, publicly perform, sublicense, and distribute the
|
||||
Work and such Derivative Works in Source or Object form.
|
||||
|
||||
3. Grant of Patent License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
(except as stated in this section) patent license to make, have made,
|
||||
use, offer to sell, sell, import, and otherwise transfer the Work,
|
||||
where such license applies only to those patent claims licensable
|
||||
by such Contributor that are necessarily infringed by their
|
||||
Contribution(s) alone or by combination of their Contribution(s)
|
||||
with the Work to which such Contribution(s) was submitted. If You
|
||||
institute patent litigation against any entity (including a
|
||||
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
||||
or a Contribution incorporated within the Work constitutes direct
|
||||
or contributory patent infringement, then any patent licenses
|
||||
granted to You under this License for that Work shall terminate
|
||||
as of the date such litigation is filed.
|
||||
|
||||
4. Redistribution. You may reproduce and distribute copies of the
|
||||
Work or Derivative Works thereof in any medium, with or without
|
||||
modifications, and in Source or Object form, provided that You
|
||||
meet the following conditions:
|
||||
|
||||
(a) You must give any other recipients of the Work or
|
||||
Derivative Works a copy of this License; and
|
||||
|
||||
(b) You must cause any modified files to carry prominent notices
|
||||
stating that You changed the files; and
|
||||
|
||||
(c) You must retain, in the Source form of any Derivative Works
|
||||
that You distribute, all copyright, patent, trademark, and
|
||||
attribution notices from the Source form of the Work,
|
||||
excluding those notices that do not pertain to any part of
|
||||
the Derivative Works; and
|
||||
|
||||
(d) If the Work includes a "NOTICE" text file as part of its
|
||||
distribution, then any Derivative Works that You distribute must
|
||||
include a readable copy of the attribution notices contained
|
||||
within such NOTICE file, excluding those notices that do not
|
||||
pertain to any part of the Derivative Works, in at least one
|
||||
of the following places: within a NOTICE text file distributed
|
||||
as part of the Derivative Works; within the Source form or
|
||||
documentation, if provided along with the Derivative Works; or,
|
||||
within a display generated by the Derivative Works, if and
|
||||
wherever such third-party notices normally appear. The contents
|
||||
of the NOTICE file are for informational purposes only and
|
||||
do not modify the License. You may add Your own attribution
|
||||
notices within Derivative Works that You distribute, alongside
|
||||
or as an addendum to the NOTICE text from the Work, provided
|
||||
that such additional attribution notices cannot be construed
|
||||
as modifying the License.
|
||||
|
||||
You may add Your own copyright statement to Your modifications and
|
||||
may provide additional or different license terms and conditions
|
||||
for use, reproduction, or distribution of Your modifications, or
|
||||
for any such Derivative Works as a whole, provided Your use,
|
||||
reproduction, and distribution of the Work otherwise complies with
|
||||
the conditions stated in this License.
|
||||
|
||||
5. Submission of Contributions. Unless You explicitly state otherwise,
|
||||
any Contribution intentionally submitted for inclusion in the Work
|
||||
by You to the Licensor shall be under the terms and conditions of
|
||||
this License, without any additional terms or conditions.
|
||||
Notwithstanding the above, nothing herein shall supersede or modify
|
||||
the terms of any separate license agreement you may have executed
|
||||
with Licensor regarding such Contributions.
|
||||
|
||||
6. Trademarks. This License does not grant permission to use the trade
|
||||
names, trademarks, service marks, or product names of the Licensor,
|
||||
except as required for reasonable and customary use in describing the
|
||||
origin of the Work and reproducing the content of the NOTICE file.
|
||||
|
||||
7. Disclaimer of Warranty. Unless required by applicable law or
|
||||
agreed to in writing, Licensor provides the Work (and each
|
||||
Contributor provides its Contributions) on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
||||
implied, including, without limitation, any warranties or conditions
|
||||
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
||||
PARTICULAR PURPOSE. You are solely responsible for determining the
|
||||
appropriateness of using or redistributing the Work and assume any
|
||||
risks associated with Your exercise of permissions under this License.
|
||||
|
||||
8. Limitation of Liability. In no event and under no legal theory,
|
||||
whether in tort (including negligence), contract, or otherwise,
|
||||
unless required by applicable law (such as deliberate and grossly
|
||||
negligent acts) or agreed to in writing, shall any Contributor be
|
||||
liable to You for damages, including any direct, indirect, special,
|
||||
incidental, or consequential damages of any character arising as a
|
||||
result of this License or out of the use or inability to use the
|
||||
Work (including but not limited to damages for loss of goodwill,
|
||||
work stoppage, computer failure or malfunction, or any and all
|
||||
other commercial damages or losses), even if such Contributor
|
||||
has been advised of the possibility of such damages.
|
||||
|
||||
9. Accepting Warranty or Additional Liability. While redistributing
|
||||
the Work or Derivative Works thereof, You may choose to offer,
|
||||
and charge a fee for, acceptance of support, warranty, indemnity,
|
||||
or other liability obligations and/or rights consistent with this
|
||||
License. However, in accepting such obligations, You may act only
|
||||
on Your own behalf and on Your sole responsibility, not on behalf
|
||||
of any other Contributor, and only if You agree to indemnify,
|
||||
defend, and hold each Contributor harmless for any liability
|
||||
incurred by, or claims asserted against, such Contributor by reason
|
||||
of your accepting any such warranty or additional liability.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
APPENDIX: How to apply the Apache License to your work.
|
||||
|
||||
To apply the Apache License to your work, attach the following
|
||||
boilerplate notice, with the fields enclosed by brackets "[]"
|
||||
replaced with your own identifying information. (Don't include
|
||||
the brackets!) The text should be enclosed in the appropriate
|
||||
comment syntax for the file format. We also recommend that a
|
||||
file or class name and description of purpose be included on the
|
||||
same "printed page" as the copyright notice for easier
|
||||
identification within third-party archives.
|
||||
|
||||
Copyright [yyyy] [name of copyright owner]
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
@ -0,0 +1,9 @@
|
||||
graft src
|
||||
graft tests
|
||||
global-exclude *.pyc
|
||||
global-exclude *.pyo
|
||||
global-exclude __pycache__/*
|
||||
include CHANGELOG.md
|
||||
include MANIFEST.in
|
||||
include README.rst
|
||||
include LICENSE
|
@ -0,0 +1,23 @@
|
||||
OpenTelemetry Scikit-Learn Instrumentation
|
||||
==========================================
|
||||
|
||||
|pypi|
|
||||
|
||||
.. |pypi| image:: https://badge.fury.io/py/opentelemetry-instrumentation-sklearn.svg
|
||||
:target: https://pypi.org/project/opentelemetry-instrumentation-sklearn/
|
||||
|
||||
This library allows tracing HTTP requests made by the
|
||||
`scikit-learn <https://scikit-learn.org/stable/>`_ library.
|
||||
|
||||
Installation
|
||||
------------
|
||||
|
||||
::
|
||||
|
||||
pip install opentelemetry-instrumentation-sklearn
|
||||
|
||||
References
|
||||
----------
|
||||
|
||||
* `OpenTelemetry sklearn Instrumentation <https://opentelemetry-python.readthedocs.io/en/latest/instrumentation/sklearn/sklearn.html>`_
|
||||
* `OpenTelemetry Project <https://opentelemetry.io/>`_
|
@ -0,0 +1,55 @@
|
||||
# Copyright The OpenTelemetry Authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
[metadata]
|
||||
name = opentelemetry-instrumentation-sklearn
|
||||
description = OpenTelemetry sklearn instrumentation
|
||||
long_description = file: README.rst
|
||||
long_description_content_type = text/x-rst
|
||||
author = OpenTelemetry Authors
|
||||
author_email = cncf-opentelemetry-contributors@lists.cncf.io
|
||||
url = https://github.com/open-telemetry/opentelemetry-python-contrib/tree/master/instrumentation/opentelemetry-instrumentation-sklearn
|
||||
platforms = any
|
||||
license = Apache-2.0
|
||||
classifiers =
|
||||
Development Status :: 4 - Beta
|
||||
Intended Audience :: Developers
|
||||
License :: OSI Approved :: Apache Software License
|
||||
Programming Language :: Python
|
||||
Programming Language :: Python :: 3
|
||||
Programming Language :: Python :: 3.5
|
||||
Programming Language :: Python :: 3.6
|
||||
Programming Language :: Python :: 3.7
|
||||
Programming Language :: Python :: 3.8
|
||||
|
||||
[options]
|
||||
python_requires = >=3.5
|
||||
package_dir=
|
||||
=src
|
||||
packages=find_namespace:
|
||||
install_requires =
|
||||
opentelemetry-api == 0.16.dev0
|
||||
opentelemetry-instrumentation == 0.16.dev0
|
||||
scikit-learn ~= 0.22.0
|
||||
|
||||
[options.extras_require]
|
||||
test =
|
||||
opentelemetry-test == 0.16.dev0
|
||||
|
||||
[options.packages.find]
|
||||
where = src
|
||||
|
||||
[options.entry_points]
|
||||
opentelemetry_instrumentor =
|
||||
sklearn = opentelemetry.instrumentation.sklearn:SklearnInstrumentor
|
@ -0,0 +1,31 @@
|
||||
# Copyright The OpenTelemetry Authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import os
|
||||
|
||||
import setuptools
|
||||
|
||||
BASE_DIR = os.path.dirname(__file__)
|
||||
VERSION_FILENAME = os.path.join(
|
||||
BASE_DIR,
|
||||
"src",
|
||||
"opentelemetry",
|
||||
"instrumentation",
|
||||
"sklearn",
|
||||
"version.py",
|
||||
)
|
||||
PACKAGE_INFO = {}
|
||||
with open(VERSION_FILENAME) as f:
|
||||
exec(f.read(), PACKAGE_INFO)
|
||||
|
||||
setuptools.setup(version=PACKAGE_INFO["__version__"])
|
@ -0,0 +1,759 @@
|
||||
# Copyright 2020, OpenTelemetry Authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
The integration with sklearn supports the scikit-learn compatible libraries,
|
||||
it can be enabled by using ``SklearnInstrumentor``.
|
||||
|
||||
.. sklearn: https://github.com/scikit-learn/scikit-learn
|
||||
|
||||
Usage
|
||||
-----
|
||||
|
||||
Package instrumentation example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
from opentelemetry.instrumentation.sklearn import SklearnInstrumentor
|
||||
|
||||
# instrument the sklearn library
|
||||
SklearnInstrumentor().instrument()
|
||||
|
||||
# instrument sklearn and other libraries
|
||||
SklearnInstrumentor(
|
||||
packages=["sklearn", "lightgbm", "xgboost"]
|
||||
).instrument()
|
||||
|
||||
|
||||
Model intrumentation example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
from opentelemetry.instrumentation.sklearn import SklearnInstrumentor
|
||||
from sklearn.datasets import load_iris
|
||||
from sklearn.ensemble import RandomForestClassifier
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.pipeline import Pipeline
|
||||
|
||||
X, y = load_iris(return_X_y=True)
|
||||
X_train, X_test, y_train, y_test = train_test_split(X, y)
|
||||
|
||||
model = Pipeline(
|
||||
[
|
||||
("class", RandomForestClassifier(n_estimators=10)),
|
||||
]
|
||||
)
|
||||
|
||||
model.fit(X_train, y_train)
|
||||
|
||||
SklearnInstrumentor().instrument_estimator(model)
|
||||
|
||||
"""
|
||||
import logging
|
||||
import os
|
||||
from functools import wraps
|
||||
from importlib import import_module
|
||||
from inspect import isclass
|
||||
from pkgutil import iter_modules
|
||||
from typing import Callable, Dict, List, MutableMapping, Sequence, Type, Union
|
||||
|
||||
from sklearn.base import BaseEstimator
|
||||
from sklearn.pipeline import FeatureUnion, Pipeline
|
||||
from sklearn.tree import BaseDecisionTree
|
||||
from sklearn.utils.metaestimators import _IffHasAttrDescriptor
|
||||
|
||||
from opentelemetry.instrumentation.instrumentor import BaseInstrumentor
|
||||
from opentelemetry.instrumentation.sklearn.version import __version__
|
||||
from opentelemetry.trace import get_tracer
|
||||
from opentelemetry.util.types import Attributes
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def implement_span_estimator(
|
||||
func: Callable,
|
||||
estimator: Union[BaseEstimator, Type[BaseEstimator]],
|
||||
attributes: Attributes = None,
|
||||
):
|
||||
"""Wrap the method call with a span.
|
||||
|
||||
Args:
|
||||
func: A callable to be wrapped in a span
|
||||
estimator: An instance or class of an estimator
|
||||
attributes: Attributes to apply to the span
|
||||
|
||||
Returns:
|
||||
The passed function wrapped in a span.
|
||||
"""
|
||||
if isclass(estimator):
|
||||
name = estimator.__name__
|
||||
else:
|
||||
name = estimator.__class__.__name__
|
||||
logger.debug("Instrumenting: %s.%s", name, func.__name__)
|
||||
attributes = attributes or {}
|
||||
name = "{cls}.{func}".format(cls=name, func=func.__name__)
|
||||
return implement_span_function(func, name, attributes)
|
||||
|
||||
|
||||
def implement_span_function(func: Callable, name: str, attributes: Attributes):
|
||||
"""Wrap the function with a span.
|
||||
|
||||
Args:
|
||||
func: A callable to be wrapped in a span
|
||||
name: The name of the span
|
||||
attributes: Attributes to apply to the span
|
||||
|
||||
Returns:
|
||||
The passed function wrapped in a span.
|
||||
"""
|
||||
|
||||
@wraps(func)
|
||||
def wrapper(*args, **kwargs):
|
||||
with get_tracer(__name__, __version__).start_as_current_span(
|
||||
name=name
|
||||
) as span:
|
||||
if span.is_recording():
|
||||
for key, val in attributes.items():
|
||||
span.set_attribute(key, val)
|
||||
return func(*args, **kwargs)
|
||||
|
||||
return wrapper
|
||||
|
||||
|
||||
def implement_span_delegator(
|
||||
obj: _IffHasAttrDescriptor, attributes: Attributes = None
|
||||
):
|
||||
"""Wrap the descriptor's fn with a span.
|
||||
|
||||
Args:
|
||||
obj: An instance of _IffHasAttrDescriptor
|
||||
attributes: Attributes to apply to the span
|
||||
"""
|
||||
# Don't instrument inherited delegators
|
||||
if hasattr(obj, "_otel_original_fn"):
|
||||
logger.debug("Already instrumented: %s", obj.fn.__qualname__)
|
||||
return
|
||||
logger.debug("Instrumenting: %s", obj.fn.__qualname__)
|
||||
attributes = attributes or {}
|
||||
setattr(obj, "_otel_original_fn", getattr(obj, "fn"))
|
||||
setattr(
|
||||
obj,
|
||||
"fn",
|
||||
implement_span_function(obj.fn, obj.fn.__qualname__, attributes),
|
||||
)
|
||||
|
||||
|
||||
def get_delegator(
|
||||
estimator: Type[BaseEstimator], method_name: str
|
||||
) -> Union[_IffHasAttrDescriptor, None]:
|
||||
"""Get the delegator from a class method or None.
|
||||
|
||||
Args:
|
||||
estimator: A class derived from ``sklearn``'s ``BaseEstimator``.
|
||||
method_name (str): The method name of the estimator on which to
|
||||
check for delegation.
|
||||
|
||||
Returns:
|
||||
The delegator, if one exists, otherwise None.
|
||||
"""
|
||||
class_attr = getattr(estimator, method_name)
|
||||
if getattr(class_attr, "__closure__", None) is not None:
|
||||
for cell in class_attr.__closure__:
|
||||
if isinstance(cell.cell_contents, _IffHasAttrDescriptor):
|
||||
return cell.cell_contents
|
||||
return None
|
||||
|
||||
|
||||
def get_base_estimators(packages: List[str]) -> Dict[str, Type[BaseEstimator]]:
|
||||
"""Walk package hierarchies to get BaseEstimator-derived classes.
|
||||
|
||||
Args:
|
||||
packages (list(str)): A list of package names to instrument.
|
||||
|
||||
Returns:
|
||||
A dictionary of qualnames and classes inheriting from
|
||||
``BaseEstimator``.
|
||||
"""
|
||||
klasses = dict()
|
||||
for package_name in packages:
|
||||
lib = import_module(package_name)
|
||||
package_dir = os.path.dirname(lib.__file__)
|
||||
for (_, module_name, _) in iter_modules([package_dir]):
|
||||
# import the module and iterate through its attributes
|
||||
try:
|
||||
module = import_module(package_name + "." + module_name)
|
||||
except ImportError:
|
||||
logger.warning(
|
||||
"Unable to import %s.%s", package_name, module_name
|
||||
)
|
||||
continue
|
||||
for attribute_name in dir(module):
|
||||
attrib = getattr(module, attribute_name)
|
||||
if isclass(attrib) and issubclass(attrib, BaseEstimator):
|
||||
klasses[
|
||||
".".join([package_name, module_name, attribute_name])
|
||||
] = attrib
|
||||
return klasses
|
||||
|
||||
|
||||
# Methods on which spans should be applied.
|
||||
DEFAULT_METHODS = [
|
||||
"fit",
|
||||
"transform",
|
||||
"predict",
|
||||
"predict_proba",
|
||||
"_fit",
|
||||
"_transform",
|
||||
"_predict",
|
||||
"_predict_proba",
|
||||
]
|
||||
|
||||
# Classes and their attributes which contain a list of tupled estimators
|
||||
# through which we should walk recursively for estimators.
|
||||
DEFAULT_NAMEDTUPLE_ATTRIBS = {
|
||||
Pipeline: ["steps"],
|
||||
FeatureUnion: ["transformer_list"],
|
||||
}
|
||||
|
||||
# Classes and their attributes which contain an estimator or sequence of
|
||||
# estimators through which we should walk recursively for estimators.
|
||||
DEFAULT_ATTRIBS = {}
|
||||
|
||||
# Classes (including children) explicitly excluded from autoinstrumentation
|
||||
DEFAULT_EXCLUDE_CLASSES = [BaseDecisionTree]
|
||||
|
||||
# Default packages for autoinstrumentation
|
||||
DEFAULT_PACKAGES = ["sklearn"]
|
||||
|
||||
|
||||
class SklearnInstrumentor(BaseInstrumentor):
|
||||
"""Instrument a fitted sklearn model with opentelemetry spans.
|
||||
|
||||
Instrument methods of ``BaseEstimator``-derived components in a sklearn
|
||||
model. The assumption is that a machine learning model ``Pipeline`` (or
|
||||
class descendent) is being instrumented with opentelemetry. Within a
|
||||
``Pipeline`` is some hierarchy of estimators and transformers.
|
||||
|
||||
The ``instrument_estimator`` method walks this hierarchy of estimators,
|
||||
implementing each of the defined methods with its own span.
|
||||
|
||||
Certain estimators in the sklearn ecosystem contain other estimators as
|
||||
instance attributes. Support for walking this embedded sub-hierarchy is
|
||||
supported with ``recurse_attribs``. This argument is a dictionary
|
||||
with classes as keys, and a list of attributes representing embedded
|
||||
estimators as values. By default, ``recurse_attribs`` is empty.
|
||||
|
||||
Similar to Pipelines, there are also estimators which have class attributes
|
||||
as a list of 2-tuples; for instance, the ``FeatureUnion`` and its attribute
|
||||
``transformer_list``. Instrumenting estimators like this is also
|
||||
supported through the ``recurse_namedtuple_attribs`` argument. This
|
||||
argument is a dictionary with classes as keys, and a list of attribute
|
||||
names representing the namedtuple list(s). By default, the
|
||||
``recurse_namedtuple_attribs`` dictionary supports
|
||||
``Pipeline`` with ``steps``, and ``FeatureUnion`` with
|
||||
``transformer_list``.
|
||||
|
||||
Note that spans will not be generated for any child transformer whose
|
||||
parent transformer has ``n_jobs`` parameter set to anything besides
|
||||
``None`` or ``1``.
|
||||
|
||||
Package instrumentation example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
from opentelemetry.instrumentation.sklearn import SklearnInstrumentor
|
||||
|
||||
# instrument the sklearn library
|
||||
SklearnInstrumentor().instrument()
|
||||
|
||||
# instrument several sklearn-compatible libraries
|
||||
packages = ["sklearn", "lightgbm", "xgboost"]
|
||||
SklearnInstrumentor(packages=packages).instrument()
|
||||
|
||||
|
||||
Model intrumentation example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
from opentelemetry.instrumentation.sklearn import SklearnInstrumentor
|
||||
from sklearn.datasets import load_iris
|
||||
from sklearn.ensemble import RandomForestClassifier
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.pipeline import Pipeline
|
||||
|
||||
X, y = load_iris(return_X_y=True)
|
||||
X_train, X_test, y_train, y_test = train_test_split(X, y)
|
||||
|
||||
model = Pipeline(
|
||||
[
|
||||
("class", RandomForestClassifier(n_estimators=10)),
|
||||
]
|
||||
)
|
||||
|
||||
model.fit(X_train, y_train)
|
||||
|
||||
SklearnInstrumentor().instrument_estimator(model)
|
||||
|
||||
Args:
|
||||
methods (list): A list of method names on which to instrument a span.
|
||||
This list of methods will be checked on all estimators in the model
|
||||
hierarchy. Used in package and model instrumentation
|
||||
recurse_attribs (dict): A dictionary of ``BaseEstimator``-derived
|
||||
sklearn classes as keys, with values being a list of attributes. Each
|
||||
attribute represents either an estimator or list of estimators on
|
||||
which to also implement spans. An example is
|
||||
``RandomForestClassifier`` and its attribute ``estimators_``. Used
|
||||
in model instrumentation only.
|
||||
recurse_namedtuple_attribs (dict): A dictionary of ``BaseEstimator``-
|
||||
derived sklearn types as keys, with values being a list of
|
||||
attribute names. Each attribute represents a list of 2-tuples in
|
||||
which the first element is the estimator name, and the second
|
||||
element is the estimator. Defaults include sklearn's ``Pipeline``
|
||||
and its attribute ``steps``, and the ``FeatureUnion`` and its
|
||||
attribute ``transformer_list``. Used in model instrumentation only.
|
||||
packages: A list of sklearn-compatible packages to
|
||||
instrument. Used with package instrumentation only.
|
||||
exclude_classes: A list of classes to exclude from instrumentation.
|
||||
Child classes are also excluded. Default is sklearn's
|
||||
``[BaseDecisionTree]``.
|
||||
"""
|
||||
|
||||
def __new__(cls, *args, **kwargs):
|
||||
"""Override new.
|
||||
|
||||
The base class' new method passes args and kwargs. We override because
|
||||
we init the class with configuration and Python raises TypeError when
|
||||
additional arguments are passed to the object.__new__() method.
|
||||
"""
|
||||
if cls._instance is None:
|
||||
cls._instance = object.__new__(cls)
|
||||
|
||||
return cls._instance
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
methods: List[str] = None,
|
||||
recurse_attribs: Dict[Type[BaseEstimator], List[str]] = None,
|
||||
recurse_namedtuple_attribs: Dict[
|
||||
Type[BaseEstimator], List[str]
|
||||
] = None,
|
||||
packages: List[str] = None,
|
||||
exclude_classes: List[Type] = None,
|
||||
):
|
||||
self.methods = methods or DEFAULT_METHODS
|
||||
self.recurse_attribs = recurse_attribs or DEFAULT_ATTRIBS
|
||||
self.recurse_namedtuple_attribs = (
|
||||
recurse_namedtuple_attribs or DEFAULT_NAMEDTUPLE_ATTRIBS
|
||||
)
|
||||
self.packages = packages or DEFAULT_PACKAGES
|
||||
if exclude_classes is None:
|
||||
self.exclude_classes = tuple(DEFAULT_EXCLUDE_CLASSES)
|
||||
else:
|
||||
self.exclude_classes = tuple(exclude_classes)
|
||||
|
||||
def _instrument(self, **kwargs):
|
||||
"""Instrument the library, and any additional specified on init."""
|
||||
klasses = get_base_estimators(packages=self.packages)
|
||||
attributes = kwargs.get("attributes")
|
||||
for _, klass in klasses.items():
|
||||
if issubclass(klass, self.exclude_classes):
|
||||
logger.debug("Not instrumenting (excluded): %s", str(klass))
|
||||
else:
|
||||
logger.debug("Instrumenting: %s", str(klass))
|
||||
for method_name in self.methods:
|
||||
if hasattr(klass, method_name):
|
||||
self._instrument_class_method(
|
||||
estimator=klass,
|
||||
method_name=method_name,
|
||||
attributes=attributes,
|
||||
)
|
||||
|
||||
def _uninstrument(self, **kwargs):
|
||||
"""Uninstrument the library"""
|
||||
klasses = get_base_estimators(packages=self.packages)
|
||||
for _, klass in klasses.items():
|
||||
logger.debug("Uninstrumenting: %s", str(klass))
|
||||
for method_name in self.methods:
|
||||
if hasattr(klass, method_name):
|
||||
self._uninstrument_class_method(
|
||||
estimator=klass, method_name=method_name
|
||||
)
|
||||
|
||||
def instrument_estimator(
|
||||
self, estimator: BaseEstimator, attributes: Attributes = None
|
||||
):
|
||||
"""Instrument a fitted estimator and its hierarchy where configured.
|
||||
|
||||
Args:
|
||||
estimator (sklearn.base.BaseEstimator): A fitted ``sklearn``
|
||||
estimator, typically a ``Pipeline`` instance.
|
||||
attributes (dict): Attributes to attach to the spans.
|
||||
"""
|
||||
if isinstance(estimator, self.exclude_classes):
|
||||
logger.debug(
|
||||
"Not instrumenting (excluded): %s",
|
||||
estimator.__class__.__name__,
|
||||
)
|
||||
return
|
||||
|
||||
if isinstance(
|
||||
estimator, tuple(self.recurse_namedtuple_attribs.keys())
|
||||
):
|
||||
self._instrument_estimator_namedtuple(
|
||||
estimator=estimator, attributes=attributes
|
||||
)
|
||||
|
||||
if isinstance(estimator, tuple(self.recurse_attribs.keys())):
|
||||
self._instrument_estimator_attribute(
|
||||
estimator=estimator, attributes=attributes
|
||||
)
|
||||
|
||||
for method_name in self.methods:
|
||||
if hasattr(estimator, method_name):
|
||||
self._instrument_instance_method(
|
||||
estimator=estimator,
|
||||
method_name=method_name,
|
||||
attributes=attributes,
|
||||
)
|
||||
|
||||
def uninstrument_estimator(self, estimator: BaseEstimator):
|
||||
"""Uninstrument a fitted estimator and its hierarchy where configured.
|
||||
|
||||
Args:
|
||||
estimator (sklearn.base.BaseEstimator): A fitted ``sklearn``
|
||||
estimator, typically a ``Pipeline`` instance.
|
||||
"""
|
||||
if isinstance(estimator, self.exclude_classes):
|
||||
logger.debug(
|
||||
"Not uninstrumenting (excluded): %s",
|
||||
estimator.__class__.__name__,
|
||||
)
|
||||
return
|
||||
|
||||
if isinstance(
|
||||
estimator, tuple(self.recurse_namedtuple_attribs.keys())
|
||||
):
|
||||
self._uninstrument_estimator_namedtuple(estimator=estimator)
|
||||
|
||||
if isinstance(estimator, tuple(self.recurse_attribs.keys())):
|
||||
self._uninstrument_estimator_attribute(estimator=estimator)
|
||||
|
||||
for method_name in self.methods:
|
||||
if hasattr(estimator, method_name):
|
||||
self._uninstrument_instance_method(
|
||||
estimator=estimator, method_name=method_name
|
||||
)
|
||||
|
||||
def _check_instrumented(
|
||||
self,
|
||||
estimator: Union[BaseEstimator, Type[BaseEstimator]],
|
||||
method_name: str,
|
||||
) -> bool:
|
||||
"""Check an estimator-method is instrumented.
|
||||
|
||||
Args:
|
||||
estimator (BaseEstimator): A class or instance of an ``sklearn``
|
||||
estimator.
|
||||
method_name (str): The method name of the estimator on which to
|
||||
check for instrumentation.
|
||||
"""
|
||||
orig_method_name = "_otel_original_" + method_name
|
||||
has_original = hasattr(estimator, orig_method_name)
|
||||
orig_class, orig_method = getattr(
|
||||
estimator, orig_method_name, (None, None)
|
||||
)
|
||||
same_class = orig_class == estimator
|
||||
if has_original and same_class:
|
||||
class_method = self._unwrap_function(
|
||||
getattr(estimator, method_name)
|
||||
)
|
||||
# if they match then the subclass doesn't override
|
||||
# if they don't then the overridden method needs instrumentation
|
||||
if class_method.__name__ == orig_method.__name__:
|
||||
return True
|
||||
return False
|
||||
|
||||
def _uninstrument_class_method(
|
||||
self, estimator: Type[BaseEstimator], method_name: str
|
||||
):
|
||||
"""Uninstrument a class method.
|
||||
|
||||
Replaces the patched method with the original, and deletes the
|
||||
attribute which stored the original method.
|
||||
|
||||
Args:
|
||||
estimator (BaseEstimator): A class or instance of an ``sklearn``
|
||||
estimator.
|
||||
method_name (str): The method name of the estimator on which to
|
||||
apply a span.
|
||||
"""
|
||||
orig_method_name = "_otel_original_" + method_name
|
||||
if isclass(estimator):
|
||||
qualname = estimator.__qualname__
|
||||
else:
|
||||
qualname = estimator.__class__.__qualname__
|
||||
delegator = get_delegator(estimator, method_name)
|
||||
if self._check_instrumented(estimator, method_name):
|
||||
logger.debug(
|
||||
"Uninstrumenting: %s.%s", qualname, method_name,
|
||||
)
|
||||
_, orig_method = getattr(estimator, orig_method_name)
|
||||
setattr(
|
||||
estimator, method_name, orig_method,
|
||||
)
|
||||
delattr(estimator, orig_method_name)
|
||||
elif delegator is not None:
|
||||
if not hasattr(delegator, "_otel_original_fn"):
|
||||
logger.debug(
|
||||
"Already uninstrumented: %s.%s", qualname, method_name,
|
||||
)
|
||||
return
|
||||
setattr(
|
||||
delegator, "fn", getattr(delegator, "_otel_original_fn"),
|
||||
)
|
||||
delattr(delegator, "_otel_original_fn")
|
||||
else:
|
||||
logger.debug(
|
||||
"Already uninstrumented: %s.%s", qualname, method_name,
|
||||
)
|
||||
|
||||
def _uninstrument_instance_method(
|
||||
self, estimator: BaseEstimator, method_name: str
|
||||
):
|
||||
"""Uninstrument an instance method.
|
||||
|
||||
Replaces the patched method with the original, and deletes the
|
||||
attribute which stored the original method.
|
||||
|
||||
Args:
|
||||
estimator (BaseEstimator): A class or instance of an ``sklearn``
|
||||
estimator.
|
||||
method_name (str): The method name of the estimator on which to
|
||||
apply a span.
|
||||
"""
|
||||
orig_method_name = "_otel_original_" + method_name
|
||||
if isclass(estimator):
|
||||
qualname = estimator.__qualname__
|
||||
else:
|
||||
qualname = estimator.__class__.__qualname__
|
||||
if self._check_instrumented(estimator, method_name):
|
||||
logger.debug(
|
||||
"Uninstrumenting: %s.%s", qualname, method_name,
|
||||
)
|
||||
_, orig_method = getattr(estimator, orig_method_name)
|
||||
setattr(
|
||||
estimator, method_name, orig_method,
|
||||
)
|
||||
delattr(estimator, orig_method_name)
|
||||
else:
|
||||
logger.debug(
|
||||
"Already uninstrumented: %s.%s", qualname, method_name,
|
||||
)
|
||||
|
||||
def _instrument_class_method(
|
||||
self,
|
||||
estimator: Type[BaseEstimator],
|
||||
method_name: str,
|
||||
attributes: Attributes = None,
|
||||
):
|
||||
"""Instrument an estimator method with a span.
|
||||
|
||||
When instrumenting we attach a tuple of (Class, method) to the
|
||||
attribute ``_otel_original_<method_name>`` for each method. This allows
|
||||
us to replace the patched with the original in uninstrumentation, but
|
||||
also allows proper instrumentation of child classes without
|
||||
instrumenting inherited methods twice.
|
||||
|
||||
Args:
|
||||
estimator (BaseEstimator): A ``BaseEstimator``-derived
|
||||
class
|
||||
method_name (str): The method name of the estimator on which to
|
||||
apply a span.
|
||||
attributes (dict): Attributes to attach to the spans.
|
||||
"""
|
||||
if self._check_instrumented(estimator, method_name):
|
||||
logger.debug(
|
||||
"Already instrumented: %s.%s",
|
||||
estimator.__qualname__,
|
||||
method_name,
|
||||
)
|
||||
return
|
||||
class_attr = getattr(estimator, method_name)
|
||||
delegator = get_delegator(estimator, method_name)
|
||||
if isinstance(class_attr, property):
|
||||
logger.debug(
|
||||
"Not instrumenting found property: %s.%s",
|
||||
estimator.__qualname__,
|
||||
method_name,
|
||||
)
|
||||
elif delegator is not None:
|
||||
implement_span_delegator(delegator)
|
||||
else:
|
||||
setattr(
|
||||
estimator,
|
||||
"_otel_original_" + method_name,
|
||||
(estimator, class_attr),
|
||||
)
|
||||
setattr(
|
||||
estimator,
|
||||
method_name,
|
||||
implement_span_estimator(class_attr, estimator, attributes),
|
||||
)
|
||||
|
||||
def _unwrap_function(self, function):
|
||||
"""Fetch the function underlying any decorators"""
|
||||
if hasattr(function, "__wrapped__"):
|
||||
return self._unwrap_function(function.__wrapped__)
|
||||
return function
|
||||
|
||||
def _instrument_instance_method(
|
||||
self,
|
||||
estimator: BaseEstimator,
|
||||
method_name: str,
|
||||
attributes: Attributes = None,
|
||||
):
|
||||
"""Instrument an estimator instance method with a span.
|
||||
|
||||
When instrumenting we attach a tuple of (Class, method) to the
|
||||
attribute ``_otel_original_<method_name>`` for each method. This allows
|
||||
us to replace the patched with the original in unstrumentation.
|
||||
|
||||
Args:
|
||||
estimator (BaseEstimator): A fitted ``sklearn`` estimator.
|
||||
method_name (str): The method name of the estimator on which to
|
||||
apply a span.
|
||||
attributes (dict): Attributes to attach to the spans.
|
||||
"""
|
||||
if self._check_instrumented(estimator, method_name):
|
||||
logger.debug(
|
||||
"Already instrumented: %s.%s",
|
||||
estimator.__class__.__qualname__,
|
||||
method_name,
|
||||
)
|
||||
return
|
||||
|
||||
class_attr = getattr(type(estimator), method_name, None)
|
||||
if isinstance(class_attr, property):
|
||||
logger.debug(
|
||||
"Not instrumenting found property: %s.%s",
|
||||
estimator.__class__.__qualname__,
|
||||
method_name,
|
||||
)
|
||||
else:
|
||||
method = getattr(estimator, method_name)
|
||||
setattr(
|
||||
estimator, "_otel_original_" + method_name, (estimator, method)
|
||||
)
|
||||
setattr(
|
||||
estimator,
|
||||
method_name,
|
||||
implement_span_estimator(method, estimator, attributes),
|
||||
)
|
||||
|
||||
def _instrument_estimator_attribute(
|
||||
self, estimator: BaseEstimator, attributes: Attributes = None
|
||||
):
|
||||
"""Instrument instance attributes which also contain estimators.
|
||||
|
||||
Handle instance attributes which are also estimators, are a list
|
||||
(Sequence) of estimators, or are mappings (dictionary) in which
|
||||
the values are estimators.
|
||||
|
||||
Examples include ``RandomForestClassifier`` and
|
||||
``MultiOutputRegressor`` instances which have attributes
|
||||
``estimators_`` attributes.
|
||||
|
||||
Args:
|
||||
estimator (BaseEstimator): A fitted ``sklearn`` estimator, with an
|
||||
attribute which also contains an estimator or collection of
|
||||
estimators.
|
||||
attributes (dict): Attributes to attach to the spans.
|
||||
"""
|
||||
attribs = self.recurse_attribs.get(estimator.__class__, [])
|
||||
for attrib in attribs:
|
||||
attrib_value = getattr(estimator, attrib)
|
||||
if isinstance(attrib_value, Sequence):
|
||||
for value in attrib_value:
|
||||
self.instrument_estimator(
|
||||
estimator=value, attributes=attributes
|
||||
)
|
||||
elif isinstance(attrib_value, MutableMapping):
|
||||
for value in attrib_value.values():
|
||||
self.instrument_estimator(
|
||||
estimator=value, attributes=attributes
|
||||
)
|
||||
else:
|
||||
self.instrument_estimator(
|
||||
estimator=attrib_value, attributes=attributes
|
||||
)
|
||||
|
||||
def _instrument_estimator_namedtuple(
|
||||
self, estimator: BaseEstimator, attributes: Attributes = None
|
||||
):
|
||||
"""Instrument attributes with (name, estimator) tupled components.
|
||||
|
||||
Examples include Pipeline and FeatureUnion instances which
|
||||
have attributes steps and transformer_list, respectively.
|
||||
|
||||
Args:
|
||||
estimator: A fitted sklearn estimator, with an attribute which also
|
||||
contains an estimator or collection of estimators.
|
||||
attributes (dict): Attributes to attach to the spans.
|
||||
"""
|
||||
attribs = self.recurse_namedtuple_attribs.get(estimator.__class__, [])
|
||||
for attrib in attribs:
|
||||
for _, est in getattr(estimator, attrib):
|
||||
self.instrument_estimator(estimator=est, attributes=attributes)
|
||||
|
||||
def _uninstrument_estimator_attribute(self, estimator: BaseEstimator):
|
||||
"""Uninstrument instance attributes which also contain estimators.
|
||||
|
||||
Handle instance attributes which are also estimators, are a list
|
||||
(Sequence) of estimators, or are mappings (dictionary) in which
|
||||
the values are estimators.
|
||||
|
||||
Examples include ``RandomForestClassifier`` and
|
||||
``MultiOutputRegressor`` instances which have attributes
|
||||
``estimators_`` attributes.
|
||||
|
||||
Args:
|
||||
estimator (BaseEstimator): A fitted ``sklearn`` estimator, with an
|
||||
attribute which also contains an estimator or collection of
|
||||
estimators.
|
||||
"""
|
||||
attribs = self.recurse_attribs.get(estimator.__class__, [])
|
||||
for attrib in attribs:
|
||||
attrib_value = getattr(estimator, attrib)
|
||||
if isinstance(attrib_value, Sequence):
|
||||
for value in attrib_value:
|
||||
self.uninstrument_estimator(estimator=value)
|
||||
elif isinstance(attrib_value, MutableMapping):
|
||||
for value in attrib_value.values():
|
||||
self.uninstrument_estimator(estimator=value)
|
||||
else:
|
||||
self.uninstrument_estimator(estimator=attrib_value)
|
||||
|
||||
def _uninstrument_estimator_namedtuple(self, estimator: BaseEstimator):
|
||||
"""Uninstrument attributes with (name, estimator) tupled components.
|
||||
|
||||
Examples include Pipeline and FeatureUnion instances which
|
||||
have attributes steps and transformer_list, respectively.
|
||||
|
||||
Args:
|
||||
estimator: A fitted sklearn estimator, with an attribute which also
|
||||
contains an estimator or collection of estimators.
|
||||
"""
|
||||
attribs = self.recurse_namedtuple_attribs.get(estimator.__class__, [])
|
||||
for attrib in attribs:
|
||||
for _, est in getattr(estimator, attrib):
|
||||
self.uninstrument_estimator(estimator=est)
|
@ -0,0 +1,15 @@
|
||||
# Copyright 2020, OpenTelemetry Authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
__version__ = "0.16.dev0"
|
@ -0,0 +1,54 @@
|
||||
# Copyright 2020, OpenTelemetry Authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import numpy as np
|
||||
from sklearn.datasets import load_iris
|
||||
from sklearn.decomposition import PCA, TruncatedSVD
|
||||
from sklearn.ensemble import RandomForestClassifier
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.pipeline import FeatureUnion, Pipeline
|
||||
from sklearn.preprocessing import Normalizer, StandardScaler
|
||||
|
||||
X, y = load_iris(return_X_y=True)
|
||||
X_train, X_test, y_train, y_test = train_test_split(X, y)
|
||||
|
||||
|
||||
def pipeline():
|
||||
"""A dummy model that has a bunch of components that we can test."""
|
||||
model = Pipeline(
|
||||
[
|
||||
("scaler", StandardScaler()),
|
||||
("normal", Normalizer()),
|
||||
(
|
||||
"union",
|
||||
FeatureUnion(
|
||||
[
|
||||
("pca", PCA(n_components=1)),
|
||||
("svd", TruncatedSVD(n_components=2)),
|
||||
],
|
||||
n_jobs=1, # parallelized components won't generate spans
|
||||
),
|
||||
),
|
||||
("class", RandomForestClassifier(n_estimators=10)),
|
||||
]
|
||||
)
|
||||
model.fit(X_train, y_train)
|
||||
return model
|
||||
|
||||
|
||||
def random_input():
|
||||
"""A random record from the feature set."""
|
||||
rows = X.shape[0]
|
||||
random_row = np.random.choice(rows, size=1)
|
||||
return X[random_row, :]
|
@ -0,0 +1,189 @@
|
||||
# Copyright 2020, OpenTelemetry Authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from sklearn.ensemble import RandomForestClassifier
|
||||
|
||||
from opentelemetry.instrumentation.sklearn import (
|
||||
DEFAULT_EXCLUDE_CLASSES,
|
||||
DEFAULT_METHODS,
|
||||
SklearnInstrumentor,
|
||||
get_base_estimators,
|
||||
get_delegator,
|
||||
)
|
||||
from opentelemetry.test.test_base import TestBase
|
||||
from opentelemetry.trace import SpanKind
|
||||
|
||||
from .fixtures import pipeline, random_input
|
||||
|
||||
|
||||
def assert_instrumented(base_estimators):
|
||||
for _, estimator in base_estimators.items():
|
||||
for method_name in DEFAULT_METHODS:
|
||||
original_method_name = "_otel_original_" + method_name
|
||||
if issubclass(estimator, tuple(DEFAULT_EXCLUDE_CLASSES)):
|
||||
assert not hasattr(estimator, original_method_name)
|
||||
continue
|
||||
class_attr = getattr(estimator, method_name, None)
|
||||
if isinstance(class_attr, property):
|
||||
assert not hasattr(estimator, original_method_name)
|
||||
continue
|
||||
delegator = None
|
||||
if hasattr(estimator, method_name):
|
||||
delegator = get_delegator(estimator, method_name)
|
||||
if delegator is not None:
|
||||
assert hasattr(delegator, "_otel_original_fn")
|
||||
elif hasattr(estimator, method_name):
|
||||
assert hasattr(estimator, original_method_name)
|
||||
|
||||
|
||||
def assert_uninstrumented(base_estimators):
|
||||
for _, estimator in base_estimators.items():
|
||||
for method_name in DEFAULT_METHODS:
|
||||
original_method_name = "_otel_original_" + method_name
|
||||
if issubclass(estimator, tuple(DEFAULT_EXCLUDE_CLASSES)):
|
||||
assert not hasattr(estimator, original_method_name)
|
||||
continue
|
||||
class_attr = getattr(estimator, method_name, None)
|
||||
if isinstance(class_attr, property):
|
||||
assert not hasattr(estimator, original_method_name)
|
||||
continue
|
||||
delegator = None
|
||||
if hasattr(estimator, method_name):
|
||||
delegator = get_delegator(estimator, method_name)
|
||||
if delegator is not None:
|
||||
assert not hasattr(delegator, "_otel_original_fn")
|
||||
elif hasattr(estimator, method_name):
|
||||
assert not hasattr(estimator, original_method_name)
|
||||
|
||||
|
||||
class TestSklearn(TestBase):
|
||||
def test_package_instrumentation(self):
|
||||
ski = SklearnInstrumentor()
|
||||
|
||||
base_estimators = get_base_estimators(packages=["sklearn"])
|
||||
|
||||
model = pipeline()
|
||||
|
||||
ski.instrument()
|
||||
assert_instrumented(base_estimators)
|
||||
|
||||
x_test = random_input()
|
||||
|
||||
model.predict(x_test)
|
||||
|
||||
spans = self.memory_exporter.get_finished_spans()
|
||||
self.assertEqual(len(spans), 8)
|
||||
self.memory_exporter.clear()
|
||||
|
||||
ski.uninstrument()
|
||||
assert_uninstrumented(base_estimators)
|
||||
|
||||
model = pipeline()
|
||||
x_test = random_input()
|
||||
|
||||
model.predict(x_test)
|
||||
|
||||
spans = self.memory_exporter.get_finished_spans()
|
||||
self.assertEqual(len(spans), 0)
|
||||
|
||||
def test_span_properties(self):
|
||||
"""Test that we get all of the spans we expect."""
|
||||
model = pipeline()
|
||||
ski = SklearnInstrumentor()
|
||||
ski.instrument_estimator(estimator=model)
|
||||
|
||||
x_test = random_input()
|
||||
|
||||
model.predict(x_test)
|
||||
|
||||
spans = self.memory_exporter.get_finished_spans()
|
||||
self.assertEqual(len(spans), 8)
|
||||
span = spans[0]
|
||||
self.assertEqual(span.name, "StandardScaler.transform")
|
||||
self.assertEqual(span.kind, SpanKind.INTERNAL)
|
||||
self.assertEqual(span.parent.span_id, spans[-1].context.span_id)
|
||||
span = spans[1]
|
||||
self.assertEqual(span.name, "Normalizer.transform")
|
||||
self.assertEqual(span.kind, SpanKind.INTERNAL)
|
||||
self.assertEqual(span.parent.span_id, spans[-1].context.span_id)
|
||||
span = spans[2]
|
||||
self.assertEqual(span.name, "PCA.transform")
|
||||
self.assertEqual(span.kind, SpanKind.INTERNAL)
|
||||
self.assertEqual(span.parent.span_id, spans[4].context.span_id)
|
||||
span = spans[3]
|
||||
self.assertEqual(span.name, "TruncatedSVD.transform")
|
||||
self.assertEqual(span.kind, SpanKind.INTERNAL)
|
||||
self.assertEqual(span.parent.span_id, spans[4].context.span_id)
|
||||
span = spans[4]
|
||||
self.assertEqual(span.name, "FeatureUnion.transform")
|
||||
self.assertEqual(span.kind, SpanKind.INTERNAL)
|
||||
self.assertEqual(span.parent.span_id, spans[-1].context.span_id)
|
||||
span = spans[5]
|
||||
self.assertEqual(span.name, "RandomForestClassifier.predict_proba")
|
||||
self.assertEqual(span.kind, SpanKind.INTERNAL)
|
||||
self.assertEqual(span.parent.span_id, spans[6].context.span_id)
|
||||
span = spans[6]
|
||||
self.assertEqual(span.name, "RandomForestClassifier.predict")
|
||||
self.assertEqual(span.kind, SpanKind.INTERNAL)
|
||||
self.assertEqual(span.parent.span_id, spans[-1].context.span_id)
|
||||
span = spans[7]
|
||||
self.assertEqual(span.name, "Pipeline.predict")
|
||||
self.assertEqual(span.kind, SpanKind.INTERNAL)
|
||||
|
||||
self.memory_exporter.clear()
|
||||
|
||||
# uninstrument
|
||||
ski.uninstrument_estimator(estimator=model)
|
||||
x_test = random_input()
|
||||
model.predict(x_test)
|
||||
spans = self.memory_exporter.get_finished_spans()
|
||||
self.assertEqual(len(spans), 0)
|
||||
|
||||
def test_attrib_config(self):
|
||||
"""Test that the attribute config makes spans on the decision trees."""
|
||||
model = pipeline()
|
||||
attrib_config = {RandomForestClassifier: ["estimators_"]}
|
||||
ski = SklearnInstrumentor(
|
||||
recurse_attribs=attrib_config,
|
||||
exclude_classes=[], # decision trees excluded by default
|
||||
)
|
||||
ski.instrument_estimator(estimator=model)
|
||||
|
||||
x_test = random_input()
|
||||
model.predict(x_test)
|
||||
|
||||
spans = self.memory_exporter.get_finished_spans()
|
||||
self.assertEqual(len(spans), 8 + model.steps[-1][-1].n_estimators)
|
||||
|
||||
self.memory_exporter.clear()
|
||||
|
||||
ski.uninstrument_estimator(estimator=model)
|
||||
x_test = random_input()
|
||||
model.predict(x_test)
|
||||
spans = self.memory_exporter.get_finished_spans()
|
||||
self.assertEqual(len(spans), 0)
|
||||
|
||||
def test_span_attributes(self):
|
||||
model = pipeline()
|
||||
attributes = {"model_name": "random_forest_model"}
|
||||
ski = SklearnInstrumentor()
|
||||
ski.instrument_estimator(estimator=model, attributes=attributes)
|
||||
|
||||
x_test = random_input()
|
||||
|
||||
model.predict(x_test)
|
||||
|
||||
spans = self.memory_exporter.get_finished_spans()
|
||||
for span in spans:
|
||||
assert span.attributes["model_name"] == "random_forest_model"
|
@ -0,0 +1,6 @@
|
||||
# Changelog
|
||||
|
||||
## Unreleased
|
||||
|
||||
- Provide components needed to Configure OTel SDK for Tracing with AWS X-Ray
|
||||
([#130](https://github.com/open-telemetry/opentelemetry-python-contrib/pull/130))
|
201
sdk-extension/opentelemetry-sdk-extension-aws/LICENSE
Normal file
201
sdk-extension/opentelemetry-sdk-extension-aws/LICENSE
Normal file
@ -0,0 +1,201 @@
|
||||
Apache License
|
||||
Version 2.0, January 2004
|
||||
http://www.apache.org/licenses/
|
||||
|
||||
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
||||
|
||||
1. Definitions.
|
||||
|
||||
"License" shall mean the terms and conditions for use, reproduction,
|
||||
and distribution as defined by Sections 1 through 9 of this document.
|
||||
|
||||
"Licensor" shall mean the copyright owner or entity authorized by
|
||||
the copyright owner that is granting the License.
|
||||
|
||||
"Legal Entity" shall mean the union of the acting entity and all
|
||||
other entities that control, are controlled by, or are under common
|
||||
control with that entity. For the purposes of this definition,
|
||||
"control" means (i) the power, direct or indirect, to cause the
|
||||
direction or management of such entity, whether by contract or
|
||||
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
||||
outstanding shares, or (iii) beneficial ownership of such entity.
|
||||
|
||||
"You" (or "Your") shall mean an individual or Legal Entity
|
||||
exercising permissions granted by this License.
|
||||
|
||||
"Source" form shall mean the preferred form for making modifications,
|
||||
including but not limited to software source code, documentation
|
||||
source, and configuration files.
|
||||
|
||||
"Object" form shall mean any form resulting from mechanical
|
||||
transformation or translation of a Source form, including but
|
||||
not limited to compiled object code, generated documentation,
|
||||
and conversions to other media types.
|
||||
|
||||
"Work" shall mean the work of authorship, whether in Source or
|
||||
Object form, made available under the License, as indicated by a
|
||||
copyright notice that is included in or attached to the work
|
||||
(an example is provided in the Appendix below).
|
||||
|
||||
"Derivative Works" shall mean any work, whether in Source or Object
|
||||
form, that is based on (or derived from) the Work and for which the
|
||||
editorial revisions, annotations, elaborations, or other modifications
|
||||
represent, as a whole, an original work of authorship. For the purposes
|
||||
of this License, Derivative Works shall not include works that remain
|
||||
separable from, or merely link (or bind by name) to the interfaces of,
|
||||
the Work and Derivative Works thereof.
|
||||
|
||||
"Contribution" shall mean any work of authorship, including
|
||||
the original version of the Work and any modifications or additions
|
||||
to that Work or Derivative Works thereof, that is intentionally
|
||||
submitted to Licensor for inclusion in the Work by the copyright owner
|
||||
or by an individual or Legal Entity authorized to submit on behalf of
|
||||
the copyright owner. For the purposes of this definition, "submitted"
|
||||
means any form of electronic, verbal, or written communication sent
|
||||
to the Licensor or its representatives, including but not limited to
|
||||
communication on electronic mailing lists, source code control systems,
|
||||
and issue tracking systems that are managed by, or on behalf of, the
|
||||
Licensor for the purpose of discussing and improving the Work, but
|
||||
excluding communication that is conspicuously marked or otherwise
|
||||
designated in writing by the copyright owner as "Not a Contribution."
|
||||
|
||||
"Contributor" shall mean Licensor and any individual or Legal Entity
|
||||
on behalf of whom a Contribution has been received by Licensor and
|
||||
subsequently incorporated within the Work.
|
||||
|
||||
2. Grant of Copyright License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
copyright license to reproduce, prepare Derivative Works of,
|
||||
publicly display, publicly perform, sublicense, and distribute the
|
||||
Work and such Derivative Works in Source or Object form.
|
||||
|
||||
3. Grant of Patent License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
(except as stated in this section) patent license to make, have made,
|
||||
use, offer to sell, sell, import, and otherwise transfer the Work,
|
||||
where such license applies only to those patent claims licensable
|
||||
by such Contributor that are necessarily infringed by their
|
||||
Contribution(s) alone or by combination of their Contribution(s)
|
||||
with the Work to which such Contribution(s) was submitted. If You
|
||||
institute patent litigation against any entity (including a
|
||||
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
||||
or a Contribution incorporated within the Work constitutes direct
|
||||
or contributory patent infringement, then any patent licenses
|
||||
granted to You under this License for that Work shall terminate
|
||||
as of the date such litigation is filed.
|
||||
|
||||
4. Redistribution. You may reproduce and distribute copies of the
|
||||
Work or Derivative Works thereof in any medium, with or without
|
||||
modifications, and in Source or Object form, provided that You
|
||||
meet the following conditions:
|
||||
|
||||
(a) You must give any other recipients of the Work or
|
||||
Derivative Works a copy of this License; and
|
||||
|
||||
(b) You must cause any modified files to carry prominent notices
|
||||
stating that You changed the files; and
|
||||
|
||||
(c) You must retain, in the Source form of any Derivative Works
|
||||
that You distribute, all copyright, patent, trademark, and
|
||||
attribution notices from the Source form of the Work,
|
||||
excluding those notices that do not pertain to any part of
|
||||
the Derivative Works; and
|
||||
|
||||
(d) If the Work includes a "NOTICE" text file as part of its
|
||||
distribution, then any Derivative Works that You distribute must
|
||||
include a readable copy of the attribution notices contained
|
||||
within such NOTICE file, excluding those notices that do not
|
||||
pertain to any part of the Derivative Works, in at least one
|
||||
of the following places: within a NOTICE text file distributed
|
||||
as part of the Derivative Works; within the Source form or
|
||||
documentation, if provided along with the Derivative Works; or,
|
||||
within a display generated by the Derivative Works, if and
|
||||
wherever such third-party notices normally appear. The contents
|
||||
of the NOTICE file are for informational purposes only and
|
||||
do not modify the License. You may add Your own attribution
|
||||
notices within Derivative Works that You distribute, alongside
|
||||
or as an addendum to the NOTICE text from the Work, provided
|
||||
that such additional attribution notices cannot be construed
|
||||
as modifying the License.
|
||||
|
||||
You may add Your own copyright statement to Your modifications and
|
||||
may provide additional or different license terms and conditions
|
||||
for use, reproduction, or distribution of Your modifications, or
|
||||
for any such Derivative Works as a whole, provided Your use,
|
||||
reproduction, and distribution of the Work otherwise complies with
|
||||
the conditions stated in this License.
|
||||
|
||||
5. Submission of Contributions. Unless You explicitly state otherwise,
|
||||
any Contribution intentionally submitted for inclusion in the Work
|
||||
by You to the Licensor shall be under the terms and conditions of
|
||||
this License, without any additional terms or conditions.
|
||||
Notwithstanding the above, nothing herein shall supersede or modify
|
||||
the terms of any separate license agreement you may have executed
|
||||
with Licensor regarding such Contributions.
|
||||
|
||||
6. Trademarks. This License does not grant permission to use the trade
|
||||
names, trademarks, service marks, or product names of the Licensor,
|
||||
except as required for reasonable and customary use in describing the
|
||||
origin of the Work and reproducing the content of the NOTICE file.
|
||||
|
||||
7. Disclaimer of Warranty. Unless required by applicable law or
|
||||
agreed to in writing, Licensor provides the Work (and each
|
||||
Contributor provides its Contributions) on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
||||
implied, including, without limitation, any warranties or conditions
|
||||
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
||||
PARTICULAR PURPOSE. You are solely responsible for determining the
|
||||
appropriateness of using or redistributing the Work and assume any
|
||||
risks associated with Your exercise of permissions under this License.
|
||||
|
||||
8. Limitation of Liability. In no event and under no legal theory,
|
||||
whether in tort (including negligence), contract, or otherwise,
|
||||
unless required by applicable law (such as deliberate and grossly
|
||||
negligent acts) or agreed to in writing, shall any Contributor be
|
||||
liable to You for damages, including any direct, indirect, special,
|
||||
incidental, or consequential damages of any character arising as a
|
||||
result of this License or out of the use or inability to use the
|
||||
Work (including but not limited to damages for loss of goodwill,
|
||||
work stoppage, computer failure or malfunction, or any and all
|
||||
other commercial damages or losses), even if such Contributor
|
||||
has been advised of the possibility of such damages.
|
||||
|
||||
9. Accepting Warranty or Additional Liability. While redistributing
|
||||
the Work or Derivative Works thereof, You may choose to offer,
|
||||
and charge a fee for, acceptance of support, warranty, indemnity,
|
||||
or other liability obligations and/or rights consistent with this
|
||||
License. However, in accepting such obligations, You may act only
|
||||
on Your own behalf and on Your sole responsibility, not on behalf
|
||||
of any other Contributor, and only if You agree to indemnify,
|
||||
defend, and hold each Contributor harmless for any liability
|
||||
incurred by, or claims asserted against, such Contributor by reason
|
||||
of your accepting any such warranty or additional liability.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
APPENDIX: How to apply the Apache License to your work.
|
||||
|
||||
To apply the Apache License to your work, attach the following
|
||||
boilerplate notice, with the fields enclosed by brackets "[]"
|
||||
replaced with your own identifying information. (Don't include
|
||||
the brackets!) The text should be enclosed in the appropriate
|
||||
comment syntax for the file format. We also recommend that a
|
||||
file or class name and description of purpose be included on the
|
||||
same "printed page" as the copyright notice for easier
|
||||
identification within third-party archives.
|
||||
|
||||
Copyright [yyyy] [name of copyright owner]
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
@ -0,0 +1,9 @@
|
||||
graft src
|
||||
graft tests
|
||||
global-exclude *.pyc
|
||||
global-exclude *.pyo
|
||||
global-exclude __pycache__/*
|
||||
include CHANGELOG.md
|
||||
include MANIFEST.in
|
||||
include README.rst
|
||||
include LICENSE
|
51
sdk-extension/opentelemetry-sdk-extension-aws/README.rst
Normal file
51
sdk-extension/opentelemetry-sdk-extension-aws/README.rst
Normal file
@ -0,0 +1,51 @@
|
||||
OpenTelemetry SDK Extension for AWS X-Ray Compatibility
|
||||
=======================================================
|
||||
|
||||
|pypi|
|
||||
|
||||
.. |pypi| image:: https://badge.fury.io/py/opentelemetry-sdk-extension-aws.svg
|
||||
:target: https://pypi.org/project/opentelemetry-sdk-extension-aws/
|
||||
|
||||
|
||||
This library provides components necessary to configure the OpenTelemetry SDK
|
||||
for tracing with AWS X-Ray.
|
||||
|
||||
Installation
|
||||
------------
|
||||
|
||||
::
|
||||
|
||||
pip install opentelemetry-sdk-extension-aws
|
||||
|
||||
|
||||
Usage (AWS X-Ray IDs Generator)
|
||||
-------------------------------
|
||||
|
||||
Configure the OTel SDK TracerProvider with the provided custom IDs Generator to
|
||||
make spans compatible with the AWS X-Ray backend tracing service.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
from opentelemetry.sdk.extension.aws.trace import AwsXRayIdsGenerator
|
||||
|
||||
trace.set_tracer_provider(
|
||||
TracerProvider(ids_generator=AwsXRayIdsGenerator())
|
||||
)
|
||||
|
||||
|
||||
Usage (AWS X-Ray Propagator)
|
||||
----------------------------
|
||||
|
||||
Set this environment variable to have the OTel SDK use the provided AWS X-Ray
|
||||
Propagator:
|
||||
|
||||
::
|
||||
|
||||
export OTEL_PROPAGATORS = aws_xray
|
||||
|
||||
|
||||
References
|
||||
----------
|
||||
|
||||
* `OpenTelemetry Project <https://opentelemetry.io/>`_
|
||||
* `AWS X-Ray Trace IDs Format <https://docs.aws.amazon.com/xray/latest/devguide/xray-api-sendingdata.html#xray-api-traceids>`_
|
53
sdk-extension/opentelemetry-sdk-extension-aws/setup.cfg
Normal file
53
sdk-extension/opentelemetry-sdk-extension-aws/setup.cfg
Normal file
@ -0,0 +1,53 @@
|
||||
# Copyright The OpenTelemetry Authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
[metadata]
|
||||
name = opentelemetry-sdk-extension-aws
|
||||
description = AWS SDK extension for OpenTelemetry
|
||||
long_description = file: README.rst
|
||||
long_description_content_type = text/x-rst
|
||||
author = OpenTelemetry Authors
|
||||
author_email = cncf-opentelemetry-contributors@lists.cncf.io
|
||||
url = https://github.com/open-telemetry/opentelemetry-python-contrib/tree/master/sdk-extension/opentelemetry-sdk-extension-aws
|
||||
platforms = any
|
||||
license = Apache-2.0
|
||||
classifiers =
|
||||
Development Status :: 4 - Beta
|
||||
Intended Audience :: Developers
|
||||
License :: OSI Approved :: Apache Software License
|
||||
Programming Language :: Python
|
||||
Programming Language :: Python :: 3
|
||||
Programming Language :: Python :: 3.5
|
||||
Programming Language :: Python :: 3.6
|
||||
Programming Language :: Python :: 3.7
|
||||
Programming Language :: Python :: 3.8
|
||||
|
||||
[options]
|
||||
python_requires = >=3.5
|
||||
package_dir=
|
||||
=src
|
||||
packages=find_namespace:
|
||||
install_requires =
|
||||
opentelemetry-api == 0.16.dev0
|
||||
|
||||
[options.entry_points]
|
||||
opentelemetry_propagator =
|
||||
aws_xray = opentelemetry.sdk.extension.aws.trace.propagation.aws_xray_format:AwsXRayFormat
|
||||
|
||||
[options.extras_require]
|
||||
test =
|
||||
opentelemetry-test == 0.16.dev0
|
||||
|
||||
[options.packages.find]
|
||||
where = src
|
26
sdk-extension/opentelemetry-sdk-extension-aws/setup.py
Normal file
26
sdk-extension/opentelemetry-sdk-extension-aws/setup.py
Normal file
@ -0,0 +1,26 @@
|
||||
# Copyright The OpenTelemetry Authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import os
|
||||
|
||||
import setuptools
|
||||
|
||||
BASE_DIR = os.path.dirname(__file__)
|
||||
VERSION_FILENAME = os.path.join(
|
||||
BASE_DIR, "src", "opentelemetry", "sdk", "extension", "aws", "version.py"
|
||||
)
|
||||
PACKAGE_INFO = {}
|
||||
with open(VERSION_FILENAME) as f:
|
||||
exec(f.read(), PACKAGE_INFO)
|
||||
|
||||
setuptools.setup(version=PACKAGE_INFO["__version__"])
|
@ -0,0 +1,19 @@
|
||||
# Copyright The OpenTelemetry Authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from opentelemetry.sdk.extension.aws.trace.aws_xray_ids_generator import (
|
||||
AwsXRayIdsGenerator,
|
||||
)
|
||||
|
||||
__all__ = ["AwsXRayIdsGenerator"]
|
@ -0,0 +1,40 @@
|
||||
# Copyright The OpenTelemetry Authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import random
|
||||
import time
|
||||
|
||||
from opentelemetry import trace
|
||||
|
||||
|
||||
class AwsXRayIdsGenerator(trace.IdsGenerator):
|
||||
"""Generates tracing IDs compatible with the AWS X-Ray tracing service. In
|
||||
the X-Ray system, the first 32 bits of the `TraceId` are the Unix epoch time
|
||||
in seconds. Since spans (AWS calls them segments) with an embedded timestamp
|
||||
more than 30 days ago are rejected, a purely random `TraceId` risks being
|
||||
rejected by the service.
|
||||
|
||||
See: https://docs.aws.amazon.com/xray/latest/devguide/xray-api-sendingdata.html#xray-api-traceids
|
||||
"""
|
||||
|
||||
random_ids_generator = trace.RandomIdsGenerator()
|
||||
|
||||
def generate_span_id(self) -> int:
|
||||
return self.random_ids_generator.generate_span_id()
|
||||
|
||||
@staticmethod
|
||||
def generate_trace_id() -> int:
|
||||
trace_time = int(time.time())
|
||||
trace_identifier = random.getrandbits(96)
|
||||
return (trace_time << 96) + trace_identifier
|
@ -0,0 +1,276 @@
|
||||
# Copyright The OpenTelemetry Authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import logging
|
||||
import typing
|
||||
|
||||
import opentelemetry.trace as trace
|
||||
from opentelemetry.context import Context
|
||||
from opentelemetry.trace.propagation.textmap import (
|
||||
Getter,
|
||||
Setter,
|
||||
TextMapPropagator,
|
||||
TextMapPropagatorT,
|
||||
)
|
||||
|
||||
TRACE_HEADER_KEY = "X-Amzn-Trace-Id"
|
||||
KV_PAIR_DELIMITER = ";"
|
||||
KEY_AND_VALUE_DELIMITER = "="
|
||||
|
||||
TRACE_ID_KEY = "Root"
|
||||
TRACE_ID_LENGTH = 35
|
||||
TRACE_ID_VERSION = "1"
|
||||
TRACE_ID_DELIMITER = "-"
|
||||
TRACE_ID_DELIMITER_INDEX_1 = 1
|
||||
TRACE_ID_DELIMITER_INDEX_2 = 10
|
||||
TRACE_ID_FIRST_PART_LENGTH = 8
|
||||
|
||||
PARENT_ID_KEY = "Parent"
|
||||
PARENT_ID_LENGTH = 16
|
||||
|
||||
SAMPLED_FLAG_KEY = "Sampled"
|
||||
SAMPLED_FLAG_LENGTH = 1
|
||||
IS_SAMPLED = "1"
|
||||
NOT_SAMPLED = "0"
|
||||
|
||||
|
||||
_logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class AwsParseTraceHeaderError(Exception):
|
||||
def __init__(self, message):
|
||||
super().__init__()
|
||||
self.message = message
|
||||
|
||||
|
||||
class AwsXRayFormat(TextMapPropagator):
|
||||
"""Propagator for the AWS X-Ray Trace Header propagation protocol.
|
||||
|
||||
See: https://docs.aws.amazon.com/xray/latest/devguide/xray-concepts.html#xray-concepts-tracingheader
|
||||
"""
|
||||
|
||||
# AWS
|
||||
|
||||
def extract(
|
||||
self,
|
||||
getter: Getter[TextMapPropagatorT],
|
||||
carrier: TextMapPropagatorT,
|
||||
context: typing.Optional[Context] = None,
|
||||
) -> Context:
|
||||
trace_header_list = getter.get(carrier, TRACE_HEADER_KEY)
|
||||
|
||||
if not trace_header_list or len(trace_header_list) != 1:
|
||||
return trace.set_span_in_context(
|
||||
trace.INVALID_SPAN, context=context
|
||||
)
|
||||
|
||||
trace_header = trace_header_list[0]
|
||||
|
||||
if not trace_header:
|
||||
return trace.set_span_in_context(
|
||||
trace.INVALID_SPAN, context=context
|
||||
)
|
||||
|
||||
try:
|
||||
(
|
||||
trace_id,
|
||||
span_id,
|
||||
sampled,
|
||||
) = AwsXRayFormat._extract_span_properties(trace_header)
|
||||
except AwsParseTraceHeaderError as err:
|
||||
_logger.debug(err.message)
|
||||
return trace.set_span_in_context(
|
||||
trace.INVALID_SPAN, context=context
|
||||
)
|
||||
|
||||
options = 0
|
||||
if sampled:
|
||||
options |= trace.TraceFlags.SAMPLED
|
||||
|
||||
span_context = trace.SpanContext(
|
||||
trace_id=trace_id,
|
||||
span_id=span_id,
|
||||
is_remote=True,
|
||||
trace_flags=trace.TraceFlags(options),
|
||||
trace_state=trace.TraceState(),
|
||||
)
|
||||
|
||||
if not span_context.is_valid:
|
||||
_logger.debug(
|
||||
"Invalid Span Extracted. Insertting INVALID span into provided context."
|
||||
)
|
||||
return trace.set_span_in_context(
|
||||
trace.INVALID_SPAN, context=context
|
||||
)
|
||||
|
||||
return trace.set_span_in_context(
|
||||
trace.DefaultSpan(span_context), context=context
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _extract_span_properties(trace_header):
|
||||
trace_id = trace.INVALID_TRACE_ID
|
||||
span_id = trace.INVALID_SPAN_ID
|
||||
sampled = False
|
||||
|
||||
for kv_pair_str in trace_header.split(KV_PAIR_DELIMITER):
|
||||
try:
|
||||
key_str, value_str = kv_pair_str.split(KEY_AND_VALUE_DELIMITER)
|
||||
key, value = key_str.strip(), value_str.strip()
|
||||
except ValueError as ex:
|
||||
raise AwsParseTraceHeaderError(
|
||||
(
|
||||
"Error parsing X-Ray trace header. Invalid key value pair: %s. Returning INVALID span context.",
|
||||
kv_pair_str,
|
||||
)
|
||||
) from ex
|
||||
if key == TRACE_ID_KEY:
|
||||
if not AwsXRayFormat._validate_trace_id(value):
|
||||
raise AwsParseTraceHeaderError(
|
||||
(
|
||||
"Invalid TraceId in X-Ray trace header: '%s' with value '%s'. Returning INVALID span context.",
|
||||
TRACE_HEADER_KEY,
|
||||
trace_header,
|
||||
)
|
||||
)
|
||||
|
||||
try:
|
||||
trace_id = AwsXRayFormat._parse_trace_id(value)
|
||||
except ValueError as ex:
|
||||
raise AwsParseTraceHeaderError(
|
||||
(
|
||||
"Invalid TraceId in X-Ray trace header: '%s' with value '%s'. Returning INVALID span context.",
|
||||
TRACE_HEADER_KEY,
|
||||
trace_header,
|
||||
)
|
||||
) from ex
|
||||
elif key == PARENT_ID_KEY:
|
||||
if not AwsXRayFormat._validate_span_id(value):
|
||||
raise AwsParseTraceHeaderError(
|
||||
(
|
||||
"Invalid ParentId in X-Ray trace header: '%s' with value '%s'. Returning INVALID span context.",
|
||||
TRACE_HEADER_KEY,
|
||||
trace_header,
|
||||
)
|
||||
)
|
||||
|
||||
try:
|
||||
span_id = AwsXRayFormat._parse_span_id(value)
|
||||
except ValueError as ex:
|
||||
raise AwsParseTraceHeaderError(
|
||||
(
|
||||
"Invalid TraceId in X-Ray trace header: '%s' with value '%s'. Returning INVALID span context.",
|
||||
TRACE_HEADER_KEY,
|
||||
trace_header,
|
||||
)
|
||||
) from ex
|
||||
elif key == SAMPLED_FLAG_KEY:
|
||||
if not AwsXRayFormat._validate_sampled_flag(value):
|
||||
raise AwsParseTraceHeaderError(
|
||||
(
|
||||
"Invalid Sampling flag in X-Ray trace header: '%s' with value '%s'. Returning INVALID span context.",
|
||||
TRACE_HEADER_KEY,
|
||||
trace_header,
|
||||
)
|
||||
)
|
||||
|
||||
sampled = AwsXRayFormat._parse_sampled_flag(value)
|
||||
|
||||
return trace_id, span_id, sampled
|
||||
|
||||
@staticmethod
|
||||
def _validate_trace_id(trace_id_str):
|
||||
return (
|
||||
len(trace_id_str) == TRACE_ID_LENGTH
|
||||
and trace_id_str.startswith(TRACE_ID_VERSION)
|
||||
and trace_id_str[TRACE_ID_DELIMITER_INDEX_1] == TRACE_ID_DELIMITER
|
||||
and trace_id_str[TRACE_ID_DELIMITER_INDEX_2] == TRACE_ID_DELIMITER
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _parse_trace_id(trace_id_str):
|
||||
timestamp_subset = trace_id_str[
|
||||
TRACE_ID_DELIMITER_INDEX_1 + 1 : TRACE_ID_DELIMITER_INDEX_2
|
||||
]
|
||||
unique_id_subset = trace_id_str[
|
||||
TRACE_ID_DELIMITER_INDEX_2 + 1 : TRACE_ID_LENGTH
|
||||
]
|
||||
return int(timestamp_subset + unique_id_subset, 16)
|
||||
|
||||
@staticmethod
|
||||
def _validate_span_id(span_id_str):
|
||||
return len(span_id_str) == PARENT_ID_LENGTH
|
||||
|
||||
@staticmethod
|
||||
def _parse_span_id(span_id_str):
|
||||
return int(span_id_str, 16)
|
||||
|
||||
@staticmethod
|
||||
def _validate_sampled_flag(sampled_flag_str):
|
||||
return len(
|
||||
sampled_flag_str
|
||||
) == SAMPLED_FLAG_LENGTH and sampled_flag_str in (
|
||||
IS_SAMPLED,
|
||||
NOT_SAMPLED,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _parse_sampled_flag(sampled_flag_str):
|
||||
return sampled_flag_str[0] == IS_SAMPLED
|
||||
|
||||
def inject(
|
||||
self,
|
||||
set_in_carrier: Setter[TextMapPropagatorT],
|
||||
carrier: TextMapPropagatorT,
|
||||
context: typing.Optional[Context] = None,
|
||||
) -> None:
|
||||
span = trace.get_current_span(context=context)
|
||||
|
||||
span_context = span.get_span_context()
|
||||
if not span_context.is_valid:
|
||||
return
|
||||
|
||||
otel_trace_id = "{:032x}".format(span_context.trace_id)
|
||||
xray_trace_id = TRACE_ID_DELIMITER.join(
|
||||
[
|
||||
TRACE_ID_VERSION,
|
||||
otel_trace_id[:TRACE_ID_FIRST_PART_LENGTH],
|
||||
otel_trace_id[TRACE_ID_FIRST_PART_LENGTH:],
|
||||
]
|
||||
)
|
||||
|
||||
parent_id = "{:016x}".format(span_context.span_id)
|
||||
|
||||
sampling_flag = (
|
||||
IS_SAMPLED
|
||||
if span_context.trace_flags & trace.TraceFlags.SAMPLED
|
||||
else NOT_SAMPLED
|
||||
)
|
||||
|
||||
# TODO: Add OT trace state to the X-Ray trace header
|
||||
|
||||
trace_header = KV_PAIR_DELIMITER.join(
|
||||
[
|
||||
KEY_AND_VALUE_DELIMITER.join([key, value])
|
||||
for key, value in [
|
||||
(TRACE_ID_KEY, xray_trace_id),
|
||||
(PARENT_ID_KEY, parent_id),
|
||||
(SAMPLED_FLAG_KEY, sampling_flag),
|
||||
]
|
||||
]
|
||||
)
|
||||
|
||||
set_in_carrier(
|
||||
carrier, TRACE_HEADER_KEY, trace_header,
|
||||
)
|
@ -0,0 +1,15 @@
|
||||
# Copyright The OpenTelemetry Authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
__version__ = "0.16.dev0"
|
@ -0,0 +1,359 @@
|
||||
# Copyright The OpenTelemetry Authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import unittest
|
||||
|
||||
from requests.structures import CaseInsensitiveDict
|
||||
|
||||
import opentelemetry.trace as trace_api
|
||||
from opentelemetry.sdk.extension.aws.trace.propagation.aws_xray_format import (
|
||||
TRACE_HEADER_KEY,
|
||||
AwsXRayFormat,
|
||||
)
|
||||
from opentelemetry.trace import (
|
||||
DEFAULT_TRACE_OPTIONS,
|
||||
DEFAULT_TRACE_STATE,
|
||||
INVALID_SPAN_CONTEXT,
|
||||
SpanContext,
|
||||
TraceFlags,
|
||||
TraceState,
|
||||
set_span_in_context,
|
||||
)
|
||||
from opentelemetry.trace.propagation.textmap import DictGetter
|
||||
|
||||
TRACE_ID_BASE16 = "8a3c60f7d188f8fa79d48a391a778fa6"
|
||||
|
||||
SPAN_ID_BASE16 = "53995c3f42cd8ad8"
|
||||
|
||||
# Propagators Usage Methods
|
||||
|
||||
|
||||
def get_as_list(dict_object, key):
|
||||
value = dict_object.get(key)
|
||||
return [value] if value is not None else []
|
||||
|
||||
|
||||
# Inject Methods
|
||||
|
||||
|
||||
def build_test_current_context(
|
||||
trace_id=int(TRACE_ID_BASE16, 16),
|
||||
span_id=int(SPAN_ID_BASE16, 16),
|
||||
is_remote=True,
|
||||
trace_flags=DEFAULT_TRACE_OPTIONS,
|
||||
trace_state=DEFAULT_TRACE_STATE,
|
||||
):
|
||||
return set_span_in_context(
|
||||
trace_api.DefaultSpan(
|
||||
build_test_span_context(
|
||||
trace_id, span_id, is_remote, trace_flags, trace_state
|
||||
)
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
# Extract Methods
|
||||
|
||||
|
||||
def get_nested_span_context(parent_context):
|
||||
return trace_api.get_current_span(parent_context).get_span_context()
|
||||
|
||||
|
||||
# Helper Methods
|
||||
|
||||
|
||||
def build_test_span_context(
|
||||
trace_id=int(TRACE_ID_BASE16, 16),
|
||||
span_id=int(SPAN_ID_BASE16, 16),
|
||||
is_remote=True,
|
||||
trace_flags=DEFAULT_TRACE_OPTIONS,
|
||||
trace_state=DEFAULT_TRACE_STATE,
|
||||
):
|
||||
return SpanContext(trace_id, span_id, is_remote, trace_flags, trace_state,)
|
||||
|
||||
|
||||
class AwsXRayPropagatorTest(unittest.TestCase):
|
||||
carrier_setter = CaseInsensitiveDict.__setitem__
|
||||
carrier_getter = DictGetter()
|
||||
XRAY_PROPAGATOR = AwsXRayFormat()
|
||||
|
||||
# Inject Tests
|
||||
|
||||
def test_inject_into_non_sampled_context(self):
|
||||
carrier = CaseInsensitiveDict()
|
||||
|
||||
AwsXRayPropagatorTest.XRAY_PROPAGATOR.inject(
|
||||
AwsXRayPropagatorTest.carrier_setter,
|
||||
carrier,
|
||||
build_test_current_context(),
|
||||
)
|
||||
|
||||
injected_items = set(carrier.items())
|
||||
expected_items = set(
|
||||
CaseInsensitiveDict(
|
||||
{
|
||||
TRACE_HEADER_KEY: "Root=1-8a3c60f7-d188f8fa79d48a391a778fa6;Parent=53995c3f42cd8ad8;Sampled=0"
|
||||
}
|
||||
).items()
|
||||
)
|
||||
|
||||
self.assertEqual(injected_items, expected_items)
|
||||
|
||||
def test_inject_into_sampled_context(self):
|
||||
carrier = CaseInsensitiveDict()
|
||||
|
||||
AwsXRayPropagatorTest.XRAY_PROPAGATOR.inject(
|
||||
AwsXRayPropagatorTest.carrier_setter,
|
||||
carrier,
|
||||
build_test_current_context(
|
||||
trace_flags=TraceFlags(TraceFlags.SAMPLED)
|
||||
),
|
||||
)
|
||||
|
||||
injected_items = set(carrier.items())
|
||||
expected_items = set(
|
||||
CaseInsensitiveDict(
|
||||
{
|
||||
TRACE_HEADER_KEY: "Root=1-8a3c60f7-d188f8fa79d48a391a778fa6;Parent=53995c3f42cd8ad8;Sampled=1"
|
||||
}
|
||||
).items()
|
||||
)
|
||||
|
||||
self.assertEqual(injected_items, expected_items)
|
||||
|
||||
def test_inject_into_context_with_non_default_state(self):
|
||||
carrier = CaseInsensitiveDict()
|
||||
|
||||
AwsXRayPropagatorTest.XRAY_PROPAGATOR.inject(
|
||||
AwsXRayPropagatorTest.carrier_setter,
|
||||
carrier,
|
||||
build_test_current_context(trace_state=TraceState({"foo": "bar"})),
|
||||
)
|
||||
|
||||
# TODO: (NathanielRN) Assert trace state when the propagator supports it
|
||||
injected_items = set(carrier.items())
|
||||
expected_items = set(
|
||||
CaseInsensitiveDict(
|
||||
{
|
||||
TRACE_HEADER_KEY: "Root=1-8a3c60f7-d188f8fa79d48a391a778fa6;Parent=53995c3f42cd8ad8;Sampled=0"
|
||||
}
|
||||
).items()
|
||||
)
|
||||
|
||||
self.assertEqual(injected_items, expected_items)
|
||||
|
||||
# Extract Tests
|
||||
|
||||
def test_extract_empty_carrier_from_invalid_context(self):
|
||||
context_with_extracted = AwsXRayPropagatorTest.XRAY_PROPAGATOR.extract(
|
||||
AwsXRayPropagatorTest.carrier_getter, CaseInsensitiveDict()
|
||||
)
|
||||
|
||||
self.assertEqual(
|
||||
get_nested_span_context(context_with_extracted),
|
||||
INVALID_SPAN_CONTEXT,
|
||||
)
|
||||
|
||||
def test_extract_not_sampled_context(self):
|
||||
context_with_extracted = AwsXRayPropagatorTest.XRAY_PROPAGATOR.extract(
|
||||
AwsXRayPropagatorTest.carrier_getter,
|
||||
CaseInsensitiveDict(
|
||||
{
|
||||
TRACE_HEADER_KEY: "Root=1-8a3c60f7-d188f8fa79d48a391a778fa6;Parent=53995c3f42cd8ad8;Sampled=0"
|
||||
}
|
||||
),
|
||||
)
|
||||
|
||||
self.assertEqual(
|
||||
get_nested_span_context(context_with_extracted),
|
||||
build_test_span_context(),
|
||||
)
|
||||
|
||||
def test_extract_sampled_context(self):
|
||||
context_with_extracted = AwsXRayPropagatorTest.XRAY_PROPAGATOR.extract(
|
||||
AwsXRayPropagatorTest.carrier_getter,
|
||||
CaseInsensitiveDict(
|
||||
{
|
||||
TRACE_HEADER_KEY: "Root=1-8a3c60f7-d188f8fa79d48a391a778fa6;Parent=53995c3f42cd8ad8;Sampled=1"
|
||||
}
|
||||
),
|
||||
)
|
||||
|
||||
self.assertEqual(
|
||||
get_nested_span_context(context_with_extracted),
|
||||
build_test_span_context(
|
||||
trace_flags=TraceFlags(TraceFlags.SAMPLED)
|
||||
),
|
||||
)
|
||||
|
||||
def test_extract_different_order(self):
|
||||
context_with_extracted = AwsXRayPropagatorTest.XRAY_PROPAGATOR.extract(
|
||||
AwsXRayPropagatorTest.carrier_getter,
|
||||
CaseInsensitiveDict(
|
||||
{
|
||||
TRACE_HEADER_KEY: "Sampled=0;Parent=53995c3f42cd8ad8;Root=1-8a3c60f7-d188f8fa79d48a391a778fa6"
|
||||
}
|
||||
),
|
||||
)
|
||||
|
||||
self.assertEqual(
|
||||
get_nested_span_context(context_with_extracted),
|
||||
build_test_span_context(),
|
||||
)
|
||||
|
||||
def test_extract_with_additional_fields(self):
|
||||
context_with_extracted = AwsXRayPropagatorTest.XRAY_PROPAGATOR.extract(
|
||||
AwsXRayPropagatorTest.carrier_getter,
|
||||
CaseInsensitiveDict(
|
||||
{
|
||||
TRACE_HEADER_KEY: "Root=1-8a3c60f7-d188f8fa79d48a391a778fa6;Parent=53995c3f42cd8ad8;Sampled=0;Foo=Bar"
|
||||
}
|
||||
),
|
||||
)
|
||||
|
||||
self.assertEqual(
|
||||
get_nested_span_context(context_with_extracted),
|
||||
build_test_span_context(),
|
||||
)
|
||||
|
||||
def test_extract_with_extra_whitespace(self):
|
||||
context_with_extracted = AwsXRayPropagatorTest.XRAY_PROPAGATOR.extract(
|
||||
AwsXRayPropagatorTest.carrier_getter,
|
||||
CaseInsensitiveDict(
|
||||
{
|
||||
TRACE_HEADER_KEY: " Root = 1-8a3c60f7-d188f8fa79d48a391a778fa6 ; Parent = 53995c3f42cd8ad8 ; Sampled = 0 "
|
||||
}
|
||||
),
|
||||
)
|
||||
|
||||
self.assertEqual(
|
||||
get_nested_span_context(context_with_extracted),
|
||||
build_test_span_context(),
|
||||
)
|
||||
|
||||
def test_extract_invalid_xray_trace_header(self):
|
||||
context_with_extracted = AwsXRayPropagatorTest.XRAY_PROPAGATOR.extract(
|
||||
AwsXRayPropagatorTest.carrier_getter,
|
||||
CaseInsensitiveDict({TRACE_HEADER_KEY: ""}),
|
||||
)
|
||||
|
||||
self.assertEqual(
|
||||
get_nested_span_context(context_with_extracted),
|
||||
INVALID_SPAN_CONTEXT,
|
||||
)
|
||||
|
||||
def test_extract_invalid_trace_id(self):
|
||||
context_with_extracted = AwsXRayPropagatorTest.XRAY_PROPAGATOR.extract(
|
||||
AwsXRayPropagatorTest.carrier_getter,
|
||||
CaseInsensitiveDict(
|
||||
{
|
||||
TRACE_HEADER_KEY: "Root=1-12345678-abcdefghijklmnopqrstuvwx;Parent=53995c3f42cd8ad8;Sampled=0"
|
||||
}
|
||||
),
|
||||
)
|
||||
|
||||
self.assertEqual(
|
||||
get_nested_span_context(context_with_extracted),
|
||||
INVALID_SPAN_CONTEXT,
|
||||
)
|
||||
|
||||
def test_extract_invalid_trace_id_size(self):
|
||||
context_with_extracted = AwsXRayPropagatorTest.XRAY_PROPAGATOR.extract(
|
||||
AwsXRayPropagatorTest.carrier_getter,
|
||||
CaseInsensitiveDict(
|
||||
{
|
||||
TRACE_HEADER_KEY: "Root=1-8a3c60f7-d188f8fa79d48a391a778fa600;Parent=53995c3f42cd8ad8;Sampled=0="
|
||||
}
|
||||
),
|
||||
)
|
||||
|
||||
self.assertEqual(
|
||||
get_nested_span_context(context_with_extracted),
|
||||
INVALID_SPAN_CONTEXT,
|
||||
)
|
||||
|
||||
def test_extract_invalid_span_id(self):
|
||||
context_with_extracted = AwsXRayPropagatorTest.XRAY_PROPAGATOR.extract(
|
||||
AwsXRayPropagatorTest.carrier_getter,
|
||||
CaseInsensitiveDict(
|
||||
{
|
||||
TRACE_HEADER_KEY: "Root=1-8a3c60f7-d188f8fa79d48a391a778fa6;Parent=abcdefghijklmnop;Sampled=0"
|
||||
}
|
||||
),
|
||||
)
|
||||
|
||||
self.assertEqual(
|
||||
get_nested_span_context(context_with_extracted),
|
||||
INVALID_SPAN_CONTEXT,
|
||||
)
|
||||
|
||||
def test_extract_invalid_span_id_size(self):
|
||||
context_with_extracted = AwsXRayPropagatorTest.XRAY_PROPAGATOR.extract(
|
||||
AwsXRayPropagatorTest.carrier_getter,
|
||||
CaseInsensitiveDict(
|
||||
{
|
||||
TRACE_HEADER_KEY: "Root=1-8a3c60f7-d188f8fa79d48a391a778fa6;Parent=53995c3f42cd8ad800;Sampled=0"
|
||||
}
|
||||
),
|
||||
)
|
||||
|
||||
self.assertEqual(
|
||||
get_nested_span_context(context_with_extracted),
|
||||
INVALID_SPAN_CONTEXT,
|
||||
)
|
||||
|
||||
def test_extract_invalid_empty_sampled_flag(self):
|
||||
context_with_extracted = AwsXRayPropagatorTest.XRAY_PROPAGATOR.extract(
|
||||
AwsXRayPropagatorTest.carrier_getter,
|
||||
CaseInsensitiveDict(
|
||||
{
|
||||
TRACE_HEADER_KEY: "Root=1-8a3c60f7-d188f8fa79d48a391a778fa6;Parent=53995c3f42cd8ad8;Sampled="
|
||||
}
|
||||
),
|
||||
)
|
||||
|
||||
self.assertEqual(
|
||||
get_nested_span_context(context_with_extracted),
|
||||
INVALID_SPAN_CONTEXT,
|
||||
)
|
||||
|
||||
def test_extract_invalid_sampled_flag_size(self):
|
||||
context_with_extracted = AwsXRayPropagatorTest.XRAY_PROPAGATOR.extract(
|
||||
AwsXRayPropagatorTest.carrier_getter,
|
||||
CaseInsensitiveDict(
|
||||
{
|
||||
TRACE_HEADER_KEY: "Root=1-8a3c60f7-d188f8fa79d48a391a778fa6;Parent=53995c3f42cd8ad8;Sampled=011"
|
||||
}
|
||||
),
|
||||
)
|
||||
|
||||
self.assertEqual(
|
||||
get_nested_span_context(context_with_extracted),
|
||||
INVALID_SPAN_CONTEXT,
|
||||
)
|
||||
|
||||
def test_extract_invalid_non_numeric_sampled_flag(self):
|
||||
context_with_extracted = AwsXRayPropagatorTest.XRAY_PROPAGATOR.extract(
|
||||
AwsXRayPropagatorTest.carrier_getter,
|
||||
CaseInsensitiveDict(
|
||||
{
|
||||
TRACE_HEADER_KEY: "Root=1-8a3c60f7-d188f8fa79d48a391a778fa6;Parent=53995c3f42cd8ad8;Sampled=a"
|
||||
}
|
||||
),
|
||||
)
|
||||
|
||||
self.assertEqual(
|
||||
get_nested_span_context(context_with_extracted),
|
||||
INVALID_SPAN_CONTEXT,
|
||||
)
|
@ -0,0 +1,42 @@
|
||||
# Copyright The OpenTelemetry Authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import datetime
|
||||
import time
|
||||
import unittest
|
||||
|
||||
from opentelemetry.sdk.extension.aws.trace import AwsXRayIdsGenerator
|
||||
from opentelemetry.trace.span import INVALID_TRACE_ID
|
||||
|
||||
|
||||
class AwsXRayIdsGeneratorTest(unittest.TestCase):
|
||||
def test_ids_are_valid(self):
|
||||
ids_generator = AwsXRayIdsGenerator()
|
||||
for _ in range(1000):
|
||||
trace_id = ids_generator.generate_trace_id()
|
||||
self.assertTrue(trace_id != INVALID_TRACE_ID)
|
||||
span_id = ids_generator.generate_span_id()
|
||||
self.assertTrue(span_id != INVALID_TRACE_ID)
|
||||
|
||||
def test_id_timestamps_are_acceptable_for_xray(self):
|
||||
ids_generator = AwsXRayIdsGenerator()
|
||||
for _ in range(1000):
|
||||
trace_id = ids_generator.generate_trace_id()
|
||||
trace_id_time = trace_id >> 96
|
||||
current_time = int(time.time())
|
||||
self.assertLessEqual(trace_id_time, current_time)
|
||||
one_month_ago_time = int(
|
||||
(datetime.datetime.now() - datetime.timedelta(30)).timestamp()
|
||||
)
|
||||
self.assertGreater(trace_id_time, one_month_ago_time)
|
8
tox.ini
8
tox.ini
@ -5,6 +5,10 @@ envlist =
|
||||
; Environments are organized by individual package, allowing
|
||||
; for specifying supported Python versions per package.
|
||||
|
||||
; opentelemetry-sdk-extension-aws
|
||||
py3{5,6,7,8}-test-sdkextension-aws
|
||||
pypy3-test-sdkextension-aws
|
||||
|
||||
; opentelemetry-instrumentation-aiohttp-client
|
||||
py3{5,6,7,8}-test-instrumentation-aiohttp-client
|
||||
pypy3-test-instrumentation-aiohttp-client
|
||||
@ -178,6 +182,7 @@ changedir =
|
||||
test-instrumentation-system-metrics: instrumentation/opentelemetry-instrumentation-system-metrics/tests
|
||||
test-instrumentation-tornado: instrumentation/opentelemetry-instrumentation-tornado/tests
|
||||
test-instrumentation-wsgi: instrumentation/opentelemetry-instrumentation-wsgi/tests
|
||||
test-sdkextension-aws: sdk-extension/opentelemetry-sdk-extension-aws/tests
|
||||
|
||||
test-exporter-datadog: exporter/opentelemetry-exporter-datadog/tests
|
||||
|
||||
@ -250,6 +255,9 @@ commands_pre =
|
||||
|
||||
elasticsearch{2,5,6,7}: pip install {toxinidir}/opentelemetry-python-core/opentelemetry-instrumentation {toxinidir}/instrumentation/opentelemetry-instrumentation-elasticsearch[test]
|
||||
|
||||
|
||||
aws: pip install requests {toxinidir}/sdk-extension/opentelemetry-sdk-extension-aws
|
||||
|
||||
; In order to get a healthy coverage report,
|
||||
; we have to install packages in editable mode.
|
||||
coverage: python {toxinidir}/scripts/eachdist.py install --editable
|
||||
|
Reference in New Issue
Block a user