Start of CubicAndQuarticApproximations in eoc10

This commit is contained in:
Grant Sanderson
2017-04-26 11:26:37 -07:00
parent fc155e1859
commit f80d7e0fcd

View File

@ -599,9 +599,9 @@ class ConstructQuadraticApproximation(ExampleApproximationWithCos, ZoomedScene):
self.play(ReplacementTransform(
self.cosine_graph.copy(),
quadratic_graph
quadratic_graph,
run_time = 3
))
self.dither()
self.quadratic_graph = quadratic_graph
@ -774,23 +774,8 @@ class ConstructQuadraticApproximation(ExampleApproximationWithCos, ZoomedScene):
self.tangent_line = tangent_line
def compute_cosine_derivative(self):
derivative = TexMobject(
"{d(", "\\cos", ")", "\\over", "dx}", "(0)",
)
derivative.highlight_by_tex("\\cos", self.colors[0])
derivative.scale(0.75)
derivative.next_to(
self.cosine_label, DOWN,
buff = MED_LARGE_BUFF,
aligned_edge = LEFT
)
rhs = TexMobject("=", "-\\sin(0)", "=", "0")
rhs.highlight_by_tex("\\sin", self.colors[1])
rhs.scale(0.8)
rhs.next_to(
derivative, RIGHT,
align_using_submobjects = True
)
derivative, rhs = self.get_cosine_derivative()
self.play(FadeIn(
VGroup(derivative, *rhs[:2]),
@ -808,8 +793,6 @@ class ConstructQuadraticApproximation(ExampleApproximationWithCos, ZoomedScene):
))
self.dither()
self.derivative_equation = VGroup(derivative, rhs)
def compute_polynomial_derivative(self):
derivative = self.get_quadratic_derivative("c_1", "c_2")
derivative_at_zero = self.get_quadratic_derivative(
@ -884,10 +867,10 @@ class ConstructQuadraticApproximation(ExampleApproximationWithCos, ZoomedScene):
self.play(ShowCreation(partial_cosine_graph, run_time = 2))
self.dither()
for x in -1, 0, 1:
for x, run_time in (-1, 2), (1, 4):
self.play(self.get_tangent_line_change_anim(
self.tangent_line, x, self.cosine_graph,
run_time = 2
run_time = run_time
))
self.dither()
self.play(*map(FadeOut, [
@ -895,26 +878,7 @@ class ConstructQuadraticApproximation(ExampleApproximationWithCos, ZoomedScene):
]))
def compute_cosine_second_derivative(self):
second_deriv = TexMobject(
"{d^2(", "\\cos", ")", "\\over", "dx}",
"(", "0", ")",
)
second_deriv.highlight_by_tex("cos", self.colors[0])
second_deriv.highlight_by_tex("-\\cos", self.colors[2])
second_deriv.scale(0.75)
second_deriv.add_background_rectangle()
second_deriv.next_to(
self.derivative_equation, DOWN,
buff = MED_LARGE_BUFF,
aligned_edge = LEFT
)
rhs = TexMobject("=", "-\\cos(0)", "=", "-1")
rhs.highlight_by_tex("cos", self.colors[2])
rhs.scale(0.8)
rhs.next_to(
second_deriv, RIGHT,
align_using_submobjects = True
)
second_deriv, rhs = self.get_cosine_second_derivative()
self.play(FadeIn(
VGroup(second_deriv, *rhs[:2]),
@ -947,15 +911,14 @@ class ConstructQuadraticApproximation(ExampleApproximationWithCos, ZoomedScene):
tangent_change_anims = [
self.get_tangent_line_change_anim(
line, np.pi/2, graph,
run_time = 5,
rate_func = lambda t : smooth(t, 2.0)
run_time = 6,
rate_func = there_and_back,
)
for line, graph in zip(tangent_lines, graphs)
]
self.play(*map(ShowCreation, tangent_lines))
self.play(*tangent_change_anims)
self.dither()
self.play(*map(FadeOut, tangent_lines))
def compute_polynomial_second_derivative(self):
@ -1032,7 +995,7 @@ class ConstructQuadraticApproximation(ExampleApproximationWithCos, ZoomedScene):
def get_quadratic_graph(self, c0 = 1, c1 = 0, c2 = -0.5):
return self.get_graph(
lambda x : c0 + c1*x + c2*x**2,
color = self.colors[-1]
color = self.colors[2]
)
def get_quadratic_tex(self, c0, c1, c2, arg = "x"):
@ -1089,11 +1052,438 @@ class ConstructQuadraticApproximation(ExampleApproximationWithCos, ZoomedScene):
return tangent_line
return UpdateFromAlphaFunc(tangent_line, update, **kwargs)
def get_cosine_derivative(self):
if not hasattr(self, "cosine_label"):
self.cosine_label = TexMobject("\\cos(x)")
self.cosine_label.to_corner(UP+LEFT)
derivative = TexMobject(
"{d(", "\\cos", ")", "\\over", "dx}", "(0)",
)
derivative.highlight_by_tex("\\cos", self.colors[0])
derivative.scale(0.7)
derivative.next_to(
self.cosine_label, DOWN,
buff = MED_LARGE_BUFF,
aligned_edge = LEFT
)
rhs = TexMobject("=", "-\\sin(0)", "=", "0")
rhs.highlight_by_tex("\\sin", self.colors[1])
rhs.scale(0.75)
rhs.next_to(
derivative, RIGHT,
align_using_submobjects = True
)
self.cosine_derivative = VGroup(derivative, rhs)
return self.cosine_derivative
def get_cosine_second_derivative(self):
if not hasattr(self, "cosine_derivative"):
self.get_cosine_derivative()
second_deriv = TexMobject(
"{d^2(", "\\cos", ")", "\\over", "dx}",
"(", "0", ")",
)
second_deriv.highlight_by_tex("cos", self.colors[0])
second_deriv.highlight_by_tex("-\\cos", self.colors[2])
second_deriv.scale(0.75)
second_deriv.add_background_rectangle()
second_deriv.next_to(
self.cosine_derivative, DOWN,
buff = MED_LARGE_BUFF,
aligned_edge = LEFT
)
rhs = TexMobject("=", "-\\cos(0)", "=", "-1")
rhs.highlight_by_tex("cos", self.colors[2])
rhs.scale(0.8)
rhs.next_to(
second_deriv, RIGHT,
align_using_submobjects = True
)
self.cosine_second_derivative = VGroup(second_deriv, rhs)
return self.cosine_second_derivative
class ReflectOnQuadraticApproximation(TeacherStudentsScene):
def construct(self):
self.show_example_approximation()
self.add_polynomial()
self.show_c0()
self.show_c1()
self.show_c2()
def show_example_approximation(self):
approx_at_x, approx_at_point = [
TexMobject(
"\\cos(", s, ")", "\\approx",
"1 - \\frac{1}{2}", "(", s, ")", "^2"
).next_to(self.get_students(), UP, 2)
for s in "x", "0.1",
]
approx_rhs = TexMobject("=", "0.995")
approx_rhs.next_to(approx_at_point, RIGHT)
real_result = TexMobject(
"\\cos(", "0.1", ")", "=",
"%.7f"%np.cos(0.1)
)
real_result.shift(
approx_rhs.get_part_by_tex("=").get_center() -\
real_result.get_part_by_tex("=").get_center()
)
for mob in approx_at_point, real_result:
mob.highlight_by_tex("0.1", YELLOW)
real_result.set_fill(opacity = 0)
self.play(
Write(approx_at_x, run_time = 2),
self.teacher.change_mode, "raise_right_hand"
)
self.dither(2)
self.play(ReplacementTransform(
approx_at_x, approx_at_point,
))
self.dither()
self.play(Write(approx_rhs))
self.dither(2)
self.play(
real_result.shift, 1.5*DOWN,
real_result.set_fill, None, 1,
)
self.change_student_modes(*["hooray"]*3)
self.dither(2)
self.change_student_modes(
*["plain"]*3,
added_anims = map(FadeOut, [
approx_at_point, approx_rhs, real_result
]),
look_at_arg = approx_at_x
)
def add_polynomial(self):
polynomial = self.get_polynomial()
const_terms = polynomial.get_parts_by_tex("c")
self.play(
Write(polynomial),
self.teacher.change, "pondering"
)
self.dither(2)
self.play(*[
ApplyMethod(
const.shift, MED_LARGE_BUFF*UP,
run_time = 2,
rate_func = squish_rate_func(there_and_back, a, a+0.7)
)
for const, a in zip(const_terms, np.linspace(0, 0.3, len(const_terms)))
])
self.dither()
self.const_terms = const_terms
self.polynomial = polynomial
def show_c0(self):
c0 = self.polynomial.get_part_by_tex("c_0")
c0.save_state()
equation = TexMobject("P(0) = \\cos(0)")
equation.to_corner(UP+RIGHT)
new_polynomial = self.get_polynomial(c0 = "1")
self.play(c0.shift, UP)
self.play(Write(equation))
self.dither()
self.play(Transform(self.polynomial, new_polynomial))
self.play(FadeOut(equation))
def show_c1(self):
c1 = self.polynomial.get_part_by_tex("c_1")
c1.save_state()
equation = TexMobject(
"\\frac{dP}{dx}(0) = \\frac{d(\\cos)}{dx}(0)"
)
equation.to_corner(UP+RIGHT)
new_polynomial = self.get_polynomial(c0 = "1", c1 = "0")
self.play(c1.shift, UP)
self.play(Write(equation))
self.dither()
self.play(Transform(self.polynomial, new_polynomial))
self.dither()
self.play(FadeOut(equation))
def show_c2(self):
c2 = self.polynomial.get_part_by_tex("c_2")
c2.save_state()
equation = TexMobject(
"\\frac{d^2 P}{dx^2}(0) = \\frac{d^2(\\cos)}{dx^2}(0)"
)
equation.to_corner(UP+RIGHT)
alt_c2_tex = "\\text{\\tiny $\\left(-\\frac{1}{2}\\right)$}"
new_polynomial = self.get_polynomial(
c0 = "1", c1 = "0", c2 = alt_c2_tex
)
new_polynomial.get_part_by_tex(alt_c2_tex).shift(SMALL_BUFF*UP)
self.play(c2.shift, UP)
self.play(FadeIn(equation))
self.dither(2)
self.play(Transform(self.polynomial, new_polynomial))
self.dither(2)
self.play(FadeOut(equation))
#####
def get_polynomial(self, c0 = "c_0", c1 = "c_1", c2 = "c_2"):
polynomial = TexMobject(
"P(x) = ", c0, "+", c1, "x", "+", c2, "x^2"
)
colors = ConstructQuadraticApproximation.CONFIG["colors"]
for tex, color in zip([c0, c1, c2], colors):
polynomial.highlight_by_tex(tex, color, substring = False)
polynomial.next_to(self.teacher, UP, LARGE_BUFF)
polynomial.to_edge(RIGHT)
return polynomial
class ReflectionOnQuadraticSupplement(ConstructQuadraticApproximation):
def construct(self):
self.setup_axes()
self.add(self.get_graph(np.cos, color = self.colors[0]))
quadratic_graph = self.get_quadratic_graph()
self.add(quadratic_graph)
self.dither()
for c0 in 0, 2, 1:
self.change_quadratic_graph(
quadratic_graph,
c0 = c0
)
self.dither(2)
for c1 in 1, -1, 0:
self.change_quadratic_graph(
quadratic_graph,
c1 = c1
)
self.dither(2)
for c2 in -0.1, -1, -0.5:
self.change_quadratic_graph(
quadratic_graph,
c2 = c2
)
self.dither(2)
class SimilarityOfChangeBehavior(ConstructQuadraticApproximation):
def construct(self):
colors = [YELLOW, WHITE]
max_x = np.pi/2
self.setup_axes()
cosine_graph = self.get_graph(np.cos, color = self.colors[0])
quadratic_graph = self.get_quadratic_graph()
graphs = VGroup(cosine_graph, quadratic_graph)
dots = VGroup()
for graph, color in zip(graphs, colors):
dot = Dot(color = color)
dot.move_to(self.input_to_graph_point(0, graph))
dot.graph = graph
dots.add(dot)
def update_dot(dot, alpha):
x = interpolate(0, max_x, alpha)
dot.move_to(self.input_to_graph_point(x, dot.graph))
dot_anims = [
UpdateFromAlphaFunc(dot, update_dot, run_time = 3)
for dot in dots
]
tangent_lines = VGroup(*[
self.get_tangent_line(0, graph, color)
for graph, color in zip(graphs, colors)
])
tangent_line_movements = [
self.get_tangent_line_change_anim(
line, max_x, graph,
run_time = 5,
)
for line, graph in zip(tangent_lines, graphs)
]
self.add(cosine_graph, quadratic_graph)
self.play(FadeIn(dots))
self.play(*dot_anims)
self.play(
FadeIn(tangent_lines),
FadeOut(dots)
)
self.play(*tangent_line_movements + dot_anims, run_time = 6)
self.play(*map(FadeOut, [tangent_lines, dots]))
self.dither()
class MoreTerms(TeacherStudentsScene):
def construct(self):
self.teacher_says(
"More terms!",
target_mode = "surprised",
)
self.change_student_modes(*["hooray"]*3)
self.dither(3)
class CubicAndQuarticApproximations(ConstructQuadraticApproximation):
CONFIG = {
"colors": [BLUE, YELLOW, GREEN, RED, MAROON_B],
}
def construct(self):
self.force_skipping()
self.add_background()
self.take_third_derivative_of_cubic()
self.show_third_derivative_of_cosine()
self.add_quartic_term()
self.show_fourth_derivative_of_cosine()
self.take_fourth_derivative_of_quartic()
self.solve_for_c4()
self.show_quartic_approximation()
def add_background(self):
self.setup_axes()
self.cosine_graph = self.get_graph(
np.cos, color = self.colors[0]
)
self.quadratic_graph = self.get_quadratic_graph()
self.big_rect = Rectangle(
height = 2*SPACE_HEIGHT,
width = 2*SPACE_WIDTH,
stroke_width = 0,
fill_color = BLACK,
fill_opacity = 0.5,
)
self.add(
self.cosine_graph, self.quadratic_graph,
self.big_rect
)
self.cosine_label = TexMobject("\\cos", "(0)", "=1")
self.cosine_label.highlight_by_tex("cos", self.colors[0])
self.cosine_label.scale(0.75)
self.cosine_label.to_corner(UP+LEFT)
self.add(self.cosine_label)
self.add(self.get_cosine_derivative())
self.add(self.get_cosine_second_derivative())
self.polynomial = TexMobject(
"P(x)=", "1", "-\\frac{1}{2}", "x^2"
)
self.polynomial.highlight_by_tex("1", self.colors[0])
self.polynomial.highlight_by_tex("-\\frac{1}{2}", self.colors[2])
self.polynomial.to_corner(UP+RIGHT)
self.polynomial.quadratic_part = VGroup(
*self.polynomial[1:]
)
self.add(self.polynomial)
def take_third_derivative_of_cubic(self):
polynomial = self.polynomial
plus_cubic_term = TexMobject("+\\,", "c_3", "x^3")
plus_cubic_term.next_to(polynomial, RIGHT)
plus_cubic_term.to_edge(RIGHT, buff = LARGE_BUFF)
plus_cubic_term.highlight_by_tex("c_3", self.colors[3])
plus_cubic_copy = plus_cubic_term.copy()
polynomial.generate_target()
polynomial.target.next_to(plus_cubic_term, LEFT)
self.play(FocusOn(polynomial))
self.play(
MoveToTarget(polynomial),
GrowFromCenter(plus_cubic_term)
)
self.dither()
brace = Brace(polynomial.quadratic_part, DOWN)
third_derivative = TexMobject(
"\\frac{d^3 P}{dx^3}(x) = ", "0"
)
third_derivative.shift(
brace.get_bottom() + MED_SMALL_BUFF*DOWN -\
third_derivative.get_part_by_tex("0").get_top()
)
self.play(Write(third_derivative[0]))
self.play(GrowFromCenter(brace))
self.play(ReplacementTransform(
polynomial.quadratic_part.copy(),
VGroup(third_derivative[1])
))
self.dither(2)
self.play(plus_cubic_copy.next_to, third_derivative, RIGHT)
derivative_term = self.take_derivatives_of_monomial(
VGroup(*plus_cubic_copy[1:])
)
third_derivative.add(derivative_term)
self.polynomial_third_derivative = third_derivative
def show_third_derivative_of_cosine(self):
pass
def add_quartic_term(self):
pass
def show_fourth_derivative_of_cosine(self):
pass
def take_fourth_derivative_of_quartic(self):
pass
def solve_for_c4(self):
pass
def show_quartic_approximation(self):
pass
####
def take_derivatives_of_monomial(self, term):
"""
Must be a group of pure TexMobjects,
last part must be of the form x^n
"""
n = int(term[-1].get_tex_string()[-1])
curr_term = term
for k in range(n, 0, -1):
exponent = curr_term[-1][-1]
exponent_copy = exponent.copy()
front_num = TexMobject("%d \\cdot"%k)
front_num.move_to(curr_term[0][0], DOWN+LEFT)
new_monomial = TexMobject("x^%d"%(k-1))
new_monomial.replace(curr_term[-1])
Transform(curr_term[-1], new_monomial).update(1)
curr_term.generate_target()
curr_term.target.shift(
(front_num.get_width()+SMALL_BUFF)*RIGHT
)
curr_term[-1][-1].set_fill(opacity = 0)
self.play(
ApplyMethod(
exponent_copy.replace, front_num[0],
path_arc = np.pi,
),
Write(
front_num[1],
rate_func = squish_rate_func(smooth, 0.5, 1)
),
MoveToTarget(curr_term),
run_time = 2
)
self.remove(exponent_copy)
self.add(front_num)
curr_term = VGroup(front_num, *curr_term)
self.dither()
self.play(FadeOut(curr_term[-1]))
return VGroup(*curr_term[:-1])