Clean up stroke geometry shader to better function in 3d

This commit is contained in:
Grant Sanderson
2023-01-12 19:24:42 -08:00
parent 9778c3e085
commit dcdf74a715

View File

@ -48,27 +48,12 @@ const float ANGLE_THRESHOLD = 1e-3;
#INSERT get_xy_to_uv.glsl
#INSERT get_gl_Position.glsl
#INSERT get_unit_normal.glsl
#INSERT finalize_color.glsl
#INSERT rotate.glsl
float atan2(float y, float x){
// Normally atan is undefined for x = 0
if(x == 0) return sign(y) * 0.5 * PI;
return atan(y, x);
}
float angle_between(vec2 v1, vec2 v2){
vec2 quot = complex_div(v2, v1); // Defined in get_xy_to_uv
return atan2(quot.y, quot.x);
}
void create_joint(float angle, vec2 unit_tan, float buff,
vec2 static_c0, out vec2 changing_c0,
vec2 static_c1, out vec2 changing_c1){
void create_joint(float angle, vec3 unit_tan, float buff,
vec3 static_c0, out vec3 changing_c0,
vec3 static_c1, out vec3 changing_c1){
float shift;
if(abs(angle) < ANGLE_THRESHOLD || abs(angle) > 0.99 * PI || int(joint_type) == NO_JOINT){
// No joint
@ -83,133 +68,121 @@ void create_joint(float angle, vec2 unit_tan, float buff,
changing_c1 = static_c1 + shift * unit_tan;
}
// This function is responsible for finding the corners of
// a bounding region around the bezier curve, which can be
// emitted as a triangle fan, with vertices vaguely close
// to control points so that the passage of vert data to
// frag shaders is most natural.
void get_corners(
vec2 controls[3],
float stroke_widths[3],
float aaw, // Anti-alias width
// Control points for a bezier curve
vec3 p0,
vec3 p1,
vec3 p2,
// Unit tangent vectors at p0 and p2
vec3 v01,
vec3 v12,
float stroke_width0,
float stroke_width2,
// Unit normal to the whole curve
vec3 normal,
// Anti-alias width
float aaw,
float angle_from_prev,
float angle_to_next,
out vec2 corners[6]
out vec3 corners[6]
){
vec2 p0 = controls[0];
vec2 p1 = controls[1];
vec2 p2 = controls[2];
// Unit vectors for directions between control points
vec2 v01 = normalize(p1 - p0);
vec2 v12 = normalize(p2 - p1);
float buff0 = 0.5 * stroke_width0 + aaw;
float buff2 = 0.5 * stroke_width2 + aaw;
float buff0 = 0.5 * stroke_widths[0] + aaw;
float buff2 = 0.5 * stroke_widths[2] + aaw;
// Add correction for sharp angles to prevent weird bevel effects (Needed?)
float thresh = 0.5 * PI;
if(angle_from_prev > thresh) buff0 *= sin(angle_from_prev);
if(angle_to_next > thresh) buff2 *= sin(angle_to_next);
// Add correction for sharp angles to prevent weird bevel effects
float thresh = 0.8 * PI;
if(angle_from_prev > thresh) buff0 *= sin(angle_from_prev) / sin(thresh);
if(angle_to_next > thresh) buff2 *= sin(angle_to_next) / sin(thresh);
// Peperndicular vectors to the left of the curve
vec2 p0_perp = buff0 * vec2(-v01.y, v01.x);
vec2 p2_perp = buff2 * vec2(-v12.y, v12.x);
vec2 p1_perp = 0.5 * (p0_perp + p2_perp);
// Perpendicular vectors to the left of the curve
vec3 p0_perp = buff0 * normalize(cross(normal, v01));
vec3 p2_perp = buff2 * normalize(cross(normal, v12));
vec3 p1_perp = 0.5 * (p0_perp + p2_perp);
// The order of corners should be for a triangle_strip.
vec2 c0 = p0 + p0_perp;
vec2 c1 = p0 - p0_perp;
vec2 c2 = p1 + p1_perp;
vec2 c3 = p1 - p1_perp;
vec2 c4 = p2 + p2_perp;
vec2 c5 = p2 - p2_perp;
float cross_prod = cross2d(v01, v12);
if(cross_prod > 0.0){ // Positive orientation
c2 = 0.5 * (c0 + c4);
}else if(cross_prod < 0.0){
c3 = 0.5 * (c1 + c5);
}
vec3 c0 = p0 + p0_perp;
vec3 c1 = p0 - p0_perp;
vec3 c2 = p1 + p1_perp;
vec3 c3 = p1 - p1_perp;
vec3 c4 = p2 + p2_perp;
vec3 c5 = p2 - p2_perp;
float orientation = dot(normal, cross(v01, v12));
// Move the inner middle control point to make
// room for the curve
if(orientation > 0.0) c2 = 0.5 * (c0 + c4);
else if(orientation < 0.0) c3 = 0.5 * (c1 + c5);
// Account for previous and next control points
create_joint(angle_from_prev, v01, buff0, c1, c1, c0, c0);
create_joint(angle_to_next, -v12, buff2, c5, c5, c4, c4);
corners = vec2[6](c0, c1, c2, c3, c4, c5);
corners = vec3[6](c0, c1, c2, c3, c4, c5);
}
void main() {
// We use the triangle strip primative, but
// actually only need every other strip element
if (int(v_vert_index[0]) % 2 == 1) return;
if (distance(verts[0], verts[1]) == 0 || distance(verts[1], verts[2]) == 0) return;
vec3 unit_normal = camera_rotation * vec3(0.0, 0.0, 1.0); // TODO, track true unit normal globally
// Curves are marked as eneded when the handle after
// the first anchor is set equal to that anchor
if (verts[0] == verts[1]) return;
float scaled_strokes[3];
for(int i = 0; i < 3; i++){
scaled_strokes[i] = v_stroke_width[i];
if(bool(flat_stroke)){
vec3 to_cam = normalize(vec3(0.0, 0.0, focal_distance) - verts[i]);
scaled_strokes[i] *= abs(dot(unit_normal, to_cam));
}
// TODO, track true unit normal globally (probably as a uniform)
vec3 unit_normal = vec3(0.0, 0.0, 1.0);
if(bool(flat_stroke)){
unit_normal = camera_rotation * vec3(0.0, 0.0, 1.0);
}
// Set joint information, potentially recomputing based on perspective
float angle_from_prev = v_joint_angle[0];
float angle_to_next = v_joint_angle[2];
vec3 p0 = verts[0];
vec3 p1 = verts[1];
vec3 p2 = verts[2];
vec3 v01 = normalize(p1 - p0);
vec3 v12 = normalize(p2 - p1);
if(angle_from_prev > 0.0 && unit_normal != vec3(0.0, 0.0, 1.0)){
vec3 v01 = verts[1] - verts[0];
vec3 from_prev = rotate(v01, angle_from_prev, unit_normal);
angle_from_prev = angle_between(from_prev.xy, v01.xy);
}
if(angle_to_next > 0.0 && unit_normal != vec3(0.0, 0.0, 1.0)){
vec3 v12 = verts[2] - verts[1];
vec3 to_next = rotate(v12, -angle_to_next, unit_normal);
angle_to_next = angle_between(v12.xy, to_next.xy);
}
// Control points are projected to the xy plane before drawing, which in turn
// gets tranlated to a uv plane. The z-coordinate information will be remembered
// by what's sent out to gl_Position, and by how it affects the lighting and stroke width
vec2 flat_verts[3] = vec2[3](verts[0].xy, verts[1].xy, verts[2].xy);
float angle = acos(clamp(dot(v01, v12), -1, 1));
is_linear = float(abs(angle) < ANGLE_THRESHOLD);
// If the curve is flat, put the middle control in the midpoint
float angle = angle_between(flat_verts[1] - flat_verts[0], flat_verts[2] - flat_verts[1]);
is_linear = float(abs(angle) < ANGLE_THRESHOLD);
if (bool(is_linear)){
flat_verts[1] = 0.5 * (flat_verts[0] + flat_verts[2]);
}
if (bool(is_linear)) p1 = 0.5 * (p0 + p2);
// We want to change the coordinates to a space where the curve
// coincides with y = x^2, between some values x0 and x2. Or, in
// the case of a linear curve (bezier degree 1), just put it on
// the segment from (0, 0) to (1, 0)
mat3 xy_to_uv = get_xy_to_uv(flat_verts, is_linear, is_linear);
mat3 xy_to_uv = get_xy_to_uv(vec2[3](p0.xy, p1.xy, p2.xy), is_linear, is_linear);
float uv_scale_factor = length(xy_to_uv[0].xy);
float scaled_aaw = anti_alias_width * (frame_shape.y / pixel_shape.y);
uv_anti_alias_width = uv_scale_factor * scaled_aaw;
// Corners of a bounding region around curve
vec2 corners[6];
vec3 corners[6];
get_corners(
flat_verts, scaled_strokes, scaled_aaw,
angle_from_prev, angle_to_next,
p0, p1, p2, v01, v12,
v_stroke_width[0],
v_stroke_width[2],
unit_normal,
scaled_aaw,
v_joint_angle[0],
v_joint_angle[2],
corners
);
// Emit each corner
for(int i = 0; i < 6; i++){
int vert_index = i / 2;
uv_coords = (xy_to_uv * vec3(corners[i], 1.0)).xy;
uv_stroke_width = uv_scale_factor * scaled_strokes[vert_index];
// Apply some lighting to the color before sending out.
vec3 xyz_coords = vec3(corners[i], verts[vert_index].z);
uv_coords = (xy_to_uv * vec3(corners[i].xy, 1)).xy;
uv_stroke_width = uv_scale_factor * v_stroke_width[vert_index];
color = finalize_color(
v_color[vert_index],
xyz_coords,
corners[i],
unit_normal,
light_source_position,
camera_position,
@ -217,7 +190,7 @@ void main() {
gloss,
shadow
);
gl_Position = get_gl_Position(vec3(corners[i], verts[vert_index].z));
gl_Position = get_gl_Position(corners[i]);
EmitVertex();
}
EndPrimitive();