mirror of
https://github.com/3b1b/manim.git
synced 2025-07-31 22:13:30 +08:00
Merge pull request #104 from 3b1b/WindingNumber
Minor internal changes to Succession
This commit is contained in:
@ -201,33 +201,7 @@ class EquationSolver1d(GraphScene, ZoomedScene):
|
||||
self.solveEquation()
|
||||
|
||||
|
||||
# TODO: Perhaps have bullets (pulses) fade out and in at ends of line, instead of jarringly
|
||||
# popping out and in?
|
||||
#
|
||||
# TODO: Perhaps have bullets change color corresponding to a function of their coordinates?
|
||||
# This could involve some merging of functoinality with PiWalker
|
||||
class LinePulser(ContinualAnimation):
|
||||
def __init__(self, line, bullet_template, num_bullets, pulse_time, color_func = None, **kwargs):
|
||||
self.line = line
|
||||
self.num_bullets = num_bullets
|
||||
self.pulse_time = pulse_time
|
||||
self.bullets = [bullet_template.copy() for i in range(num_bullets)]
|
||||
self.color_func = color_func
|
||||
ContinualAnimation.__init__(self, VGroup(line, VGroup(*self.bullets)), **kwargs)
|
||||
|
||||
def update_mobject(self, dt):
|
||||
alpha = self.external_time % self.pulse_time
|
||||
start = self.line.get_start()
|
||||
end = self.line.get_end()
|
||||
for i in range(self.num_bullets):
|
||||
position = interpolate(start, end,
|
||||
np.true_divide((i + alpha),(self.num_bullets)))
|
||||
self.bullets[i].move_to(position)
|
||||
if self.color_func:
|
||||
self.bullets.set_color(self.color_func(position))
|
||||
|
||||
|
||||
def color_func(alpha):
|
||||
def rev_to_color(alpha):
|
||||
alpha = alpha % 1
|
||||
colors = ["#FF0000", ORANGE, YELLOW, "#00FF00", "#0000FF", "#FF00FF"]
|
||||
num_colors = len(colors)
|
||||
@ -237,91 +211,6 @@ def color_func(alpha):
|
||||
|
||||
return interpolate_color(colors[start_index], colors[end_index], beta)
|
||||
|
||||
class ArrowCircleTest(Scene):
|
||||
def construct(self):
|
||||
circle_radius = 3
|
||||
circle = Circle(radius = circle_radius, color = WHITE)
|
||||
self.add(circle)
|
||||
|
||||
base_arrow = Arrow(circle_radius * 0.7 * RIGHT, circle_radius * 1.3 * RIGHT)
|
||||
|
||||
def rev_rotate(x, revs):
|
||||
x.rotate(revs * TAU, about_point = ORIGIN)
|
||||
x.set_color(color_func(revs))
|
||||
return x
|
||||
|
||||
num_arrows = 8 * 3
|
||||
arrows = [rev_rotate(base_arrow.copy(), (np.true_divide(i, num_arrows))) for i in range(num_arrows)]
|
||||
arrows_vgroup = VGroup(*arrows)
|
||||
|
||||
self.play(ShowCreation(arrows_vgroup), run_time = 2.5, rate_func = None)
|
||||
|
||||
self.wait()
|
||||
|
||||
class FuncRotater(Animation):
|
||||
CONFIG = {
|
||||
"rotate_func" : lambda x : x # Func from alpha to revolutions
|
||||
}
|
||||
|
||||
# Perhaps abstract this out into an "Animation updating from original object" class
|
||||
def update_submobject(self, submobject, starting_submobject, alpha):
|
||||
submobject.points = np.array(starting_submobject.points)
|
||||
|
||||
def update_mobject(self, alpha):
|
||||
Animation.update_mobject(self, alpha)
|
||||
angle_revs = self.rotate_func(alpha)
|
||||
# We do a clockwise rotation
|
||||
self.mobject.rotate(
|
||||
-angle_revs * TAU,
|
||||
about_point = ORIGIN
|
||||
)
|
||||
self.mobject.set_color(color_func(angle_revs))
|
||||
|
||||
class TestRotater(Scene):
|
||||
def construct(self):
|
||||
test_line = Line(ORIGIN, RIGHT)
|
||||
self.play(FuncRotater(
|
||||
test_line,
|
||||
rotate_func = lambda x : x % 0.25,
|
||||
run_time = 10))
|
||||
|
||||
# TODO: Be careful about clockwise vs. counterclockwise convention throughout!
|
||||
# Make sure this is correct everywhere in resulting video.
|
||||
class OdometerScene(Scene):
|
||||
CONFIG = {
|
||||
"rotate_func" : lambda x : np.sin(x * TAU),
|
||||
"run_time" : 5,
|
||||
"dashed_line_angle" : None,
|
||||
"biased_display_start" : None
|
||||
}
|
||||
|
||||
def construct(self):
|
||||
radius = 1.3
|
||||
circle = Circle(center = ORIGIN, radius = radius)
|
||||
self.add(circle)
|
||||
|
||||
if self.dashed_line_angle:
|
||||
dashed_line = DashedLine(ORIGIN, radius * RIGHT)
|
||||
# Clockwise rotation
|
||||
dashed_line.rotate(-self.dashed_line_angle * TAU, about_point = ORIGIN)
|
||||
self.add(dashed_line)
|
||||
|
||||
num_display = DecimalNumber(0)
|
||||
num_display.move_to(2 * DOWN)
|
||||
|
||||
display_val_bias = 0
|
||||
if self.biased_display_start != None:
|
||||
display_val_bias = self.biased_display_start - self.rotate_func(0)
|
||||
display_func = lambda alpha : self.rotate_func(alpha) + display_val_bias
|
||||
|
||||
base_arrow = Arrow(ORIGIN, RIGHT, buff = 0)
|
||||
|
||||
self.play(
|
||||
FuncRotater(base_arrow, rotate_func = self.rotate_func),
|
||||
ChangingDecimal(num_display, display_func),
|
||||
run_time = self.run_time,
|
||||
rate_func = None)
|
||||
|
||||
def point_to_rev((x, y)):
|
||||
# Warning: np.arctan2 would happily discontinuously returns the value 0 for (0, 0), due to
|
||||
# design choices in the underlying atan2 library call, but for our purposes, this is
|
||||
@ -428,7 +317,7 @@ def plane_func_from_complex_func(f):
|
||||
def point_func_from_complex_func(f):
|
||||
return lambda (x, y, z): complex_to_R3(f(complex(x, y)))
|
||||
|
||||
empty_animation = Animation(Mobject())
|
||||
empty_animation = Animation(Mobject(), run_time = 0)
|
||||
def EmptyAnimation():
|
||||
return empty_animation
|
||||
|
||||
@ -440,13 +329,13 @@ class WalkerAnimation(Animation):
|
||||
"coords_to_point" : None
|
||||
}
|
||||
|
||||
def __init__(self, walk_func, rev_func, coords_to_point, **kwargs):
|
||||
def __init__(self, walk_func, rev_func, coords_to_point, scale_factor, **kwargs):
|
||||
self.walk_func = walk_func
|
||||
self.rev_func = rev_func
|
||||
self.coords_to_point = coords_to_point
|
||||
self.compound_walker = VGroup()
|
||||
self.compound_walker.walker = PiCreature(color = RED)
|
||||
self.compound_walker.walker.scale(0.35)
|
||||
self.compound_walker.walker.scale(scale_factor)
|
||||
self.compound_walker.arrow = Arrow(ORIGIN, RIGHT) #, buff = 0)
|
||||
self.compound_walker.digest_mobject_attrs()
|
||||
Animation.__init__(self, self.compound_walker, **kwargs)
|
||||
@ -458,21 +347,60 @@ class WalkerAnimation(Animation):
|
||||
def update_mobject(self, alpha):
|
||||
Animation.update_mobject(self, alpha)
|
||||
cur_x, cur_y = cur_coords = self.walk_func(alpha)
|
||||
self.mobject.walker.move_to(self.coords_to_point(cur_x, cur_y))
|
||||
cur_point = self.coords_to_point(cur_x, cur_y)
|
||||
self.mobject.walker.move_to(cur_point)
|
||||
rev = self.rev_func(cur_coords)
|
||||
self.mobject.walker.set_color(color_func(rev))
|
||||
self.mobject.arrow.set_color(color_func(rev))
|
||||
self.mobject.walker.set_color(rev_to_color(rev))
|
||||
self.mobject.arrow.set_color(rev_to_color(rev))
|
||||
self.mobject.arrow.rotate(
|
||||
rev * TAU,
|
||||
about_point = ORIGIN #self.mobject.arrow.get_start()
|
||||
)
|
||||
|
||||
def LinearWalker(start_coords, end_coords, coords_to_point, rev_func, **kwargs):
|
||||
def walker_animation_with_display(
|
||||
walk_func,
|
||||
rev_func,
|
||||
coords_to_point,
|
||||
number_update_func = None,
|
||||
scale_factor = 0.35,
|
||||
**kwargs
|
||||
):
|
||||
|
||||
walker_anim = WalkerAnimation(
|
||||
walk_func = walk_func,
|
||||
rev_func = rev_func,
|
||||
coords_to_point = coords_to_point,
|
||||
scale_factor = scale_factor,
|
||||
**kwargs)
|
||||
walker = walker_anim.compound_walker.walker
|
||||
|
||||
if number_update_func != None:
|
||||
display = DecimalNumber(0, include_background_rectangle = True)
|
||||
displaycement = scale_factor * DOWN # How about that pun, eh?
|
||||
display.move_to(walker.get_center() + displaycement)
|
||||
display_anim = ChangingDecimal(display,
|
||||
number_update_func,
|
||||
tracked_mobject = walker_anim.compound_walker.walker,
|
||||
**kwargs)
|
||||
anim_group = AnimationGroup(walker_anim, display_anim)
|
||||
return anim_group
|
||||
else:
|
||||
return walker_anim
|
||||
|
||||
def LinearWalker(
|
||||
start_coords,
|
||||
end_coords,
|
||||
coords_to_point,
|
||||
rev_func,
|
||||
number_update_func = None,
|
||||
**kwargs
|
||||
):
|
||||
walk_func = lambda alpha : interpolate(start_coords, end_coords, alpha)
|
||||
return WalkerAnimation(
|
||||
return walker_animation_with_display(
|
||||
walk_func = walk_func,
|
||||
coords_to_point = coords_to_point,
|
||||
rev_func = rev_func,
|
||||
number_update_func = number_update_func,
|
||||
**kwargs)
|
||||
|
||||
class PiWalker(Scene):
|
||||
@ -507,7 +435,7 @@ class PiWalker(Scene):
|
||||
ShowCreation(Line(start_point, end_point), rate_func = None),
|
||||
run_time = self.step_run_time)
|
||||
|
||||
# TODO: Allow smooth paths instead of brekaing them up into lines, and
|
||||
# TODO: Allow smooth paths instead of breaking them up into lines, and
|
||||
# use point_from_proportion to get points along the way
|
||||
|
||||
|
||||
@ -564,30 +492,31 @@ class EquationSolver2d(Scene):
|
||||
self.add(num_plane)
|
||||
|
||||
rev_func = lambda p : point_to_rev(self.func(p))
|
||||
clockwise_rev_func = lambda p : -rev_func(p)
|
||||
|
||||
def Animate2dSolver(cur_depth, rect, dim_to_split):
|
||||
print "Solver at depth: " + str(cur_depth)
|
||||
|
||||
if cur_depth >= self.num_iterations:
|
||||
return EmptyAnimation()
|
||||
|
||||
def draw_line_return_wind(start, end, start_wind):
|
||||
alpha_winder = make_alpha_winder(rev_func, start, end, self.num_checkpoints)
|
||||
alpha_winder = make_alpha_winder(clockwise_rev_func, start, end, self.num_checkpoints)
|
||||
a0 = alpha_winder(0)
|
||||
rebased_winder = lambda alpha: alpha_winder(alpha) - a0 + start_wind
|
||||
flashing_line = Line(num_plane.coords_to_point(*start), num_plane.coords_to_point(*end),
|
||||
stroke_width = 5,
|
||||
thin_line = Line(num_plane.coords_to_point(*start), num_plane.coords_to_point(*end),
|
||||
stroke_width = 2,
|
||||
color = RED)
|
||||
thin_line = flashing_line.copy()
|
||||
thin_line.set_stroke(width = 1)
|
||||
walker_anim = LinearWalker(
|
||||
start_coords = start,
|
||||
end_coords = end,
|
||||
coords_to_point = num_plane.coords_to_point,
|
||||
rev_func = rev_func,
|
||||
number_update_func = rebased_winder,
|
||||
remover = True
|
||||
)
|
||||
line_draw_anim = AnimationGroup(
|
||||
ShowCreation(thin_line),
|
||||
#ShowPassingFlash(flashing_line),
|
||||
walker_anim,
|
||||
rate_func = None)
|
||||
anim = line_draw_anim
|
||||
@ -636,6 +565,7 @@ class EquationSolver2d(Scene):
|
||||
return Succession(anim,
|
||||
ShowCreation(mid_line),
|
||||
# FadeOut(mid_line), # TODO: Can change timing so this fades out at just the time it would be overdrawn
|
||||
# TODO: Investigate weirdness with changing z buffer order on mid_line vs. rectangle lines
|
||||
AnimationGroup(*sub_anims)
|
||||
)
|
||||
|
||||
@ -649,16 +579,133 @@ class EquationSolver2d(Scene):
|
||||
|
||||
rect = RectangleData(x_interval, y_interval)
|
||||
|
||||
print "Starting to compute anim"
|
||||
|
||||
anim = Animate2dSolver(
|
||||
cur_depth = 0,
|
||||
rect = rect,
|
||||
dim_to_split = 0,
|
||||
)
|
||||
|
||||
print "Done computing anim"
|
||||
|
||||
self.play(anim)
|
||||
|
||||
self.wait()
|
||||
|
||||
# TODO: Perhaps have bullets (pulses) fade out and in at ends of line, instead of jarringly
|
||||
# popping out and in?
|
||||
#
|
||||
# TODO: Perhaps have bullets change color corresponding to a function of their coordinates?
|
||||
# This could involve some merging of functoinality with PiWalker
|
||||
class LinePulser(ContinualAnimation):
|
||||
def __init__(self, line, bullet_template, num_bullets, pulse_time, output_func = None, **kwargs):
|
||||
self.line = line
|
||||
self.num_bullets = num_bullets
|
||||
self.pulse_time = pulse_time
|
||||
self.bullets = [bullet_template.copy() for i in range(num_bullets)]
|
||||
self.output_func = output_func
|
||||
ContinualAnimation.__init__(self, VGroup(line, VGroup(*self.bullets)), **kwargs)
|
||||
|
||||
def update_mobject(self, dt):
|
||||
alpha = self.external_time % self.pulse_time
|
||||
start = self.line.get_start()
|
||||
end = self.line.get_end()
|
||||
for i in range(self.num_bullets):
|
||||
position = interpolate(start, end,
|
||||
np.true_divide((i + alpha),(self.num_bullets)))
|
||||
self.bullets[i].move_to(position)
|
||||
if self.output_func:
|
||||
position_2d = (position[0], position[1])
|
||||
rev = point_to_rev(self.output_func(position_2d))
|
||||
color = rev_to_color(rev)
|
||||
self.bullets[i].set_color(color)
|
||||
|
||||
class ArrowCircleTest(Scene):
|
||||
def construct(self):
|
||||
circle_radius = 3
|
||||
circle = Circle(radius = circle_radius, color = WHITE)
|
||||
self.add(circle)
|
||||
|
||||
base_arrow = Arrow(circle_radius * 0.7 * RIGHT, circle_radius * 1.3 * RIGHT)
|
||||
|
||||
def rev_rotate(x, revs):
|
||||
x.rotate(revs * TAU, about_point = ORIGIN)
|
||||
x.set_color(rev_to_color(revs))
|
||||
return x
|
||||
|
||||
num_arrows = 8 * 3
|
||||
arrows = [rev_rotate(base_arrow.copy(), (np.true_divide(i, num_arrows))) for i in range(num_arrows)]
|
||||
arrows_vgroup = VGroup(*arrows)
|
||||
|
||||
self.play(ShowCreation(arrows_vgroup), run_time = 2.5, rate_func = None)
|
||||
|
||||
self.wait()
|
||||
|
||||
class FuncRotater(Animation):
|
||||
CONFIG = {
|
||||
"rotate_func" : lambda x : x # Func from alpha to revolutions
|
||||
}
|
||||
|
||||
# Perhaps abstract this out into an "Animation updating from original object" class
|
||||
def update_submobject(self, submobject, starting_submobject, alpha):
|
||||
submobject.points = np.array(starting_submobject.points)
|
||||
|
||||
def update_mobject(self, alpha):
|
||||
Animation.update_mobject(self, alpha)
|
||||
angle_revs = self.rotate_func(alpha)
|
||||
# We do a clockwise rotation
|
||||
self.mobject.rotate(
|
||||
-angle_revs * TAU,
|
||||
about_point = ORIGIN
|
||||
)
|
||||
self.mobject.set_color(rev_to_color(angle_revs))
|
||||
|
||||
class TestRotater(Scene):
|
||||
def construct(self):
|
||||
test_line = Line(ORIGIN, RIGHT)
|
||||
self.play(FuncRotater(
|
||||
test_line,
|
||||
rotate_func = lambda x : x % 0.25,
|
||||
run_time = 10))
|
||||
|
||||
# TODO: Be careful about clockwise vs. counterclockwise convention throughout!
|
||||
# Make sure this is correct everywhere in resulting video.
|
||||
class OdometerScene(Scene):
|
||||
CONFIG = {
|
||||
"rotate_func" : lambda x : np.sin(x * TAU),
|
||||
"run_time" : 5,
|
||||
"dashed_line_angle" : None,
|
||||
"biased_display_start" : None
|
||||
}
|
||||
|
||||
def construct(self):
|
||||
radius = 1.3
|
||||
circle = Circle(center = ORIGIN, radius = radius)
|
||||
self.add(circle)
|
||||
|
||||
if self.dashed_line_angle:
|
||||
dashed_line = DashedLine(ORIGIN, radius * RIGHT)
|
||||
# Clockwise rotation
|
||||
dashed_line.rotate(-self.dashed_line_angle * TAU, about_point = ORIGIN)
|
||||
self.add(dashed_line)
|
||||
|
||||
num_display = DecimalNumber(0, include_background_rectangle = True)
|
||||
num_display.move_to(2 * DOWN)
|
||||
|
||||
display_val_bias = 0
|
||||
if self.biased_display_start != None:
|
||||
display_val_bias = self.biased_display_start - self.rotate_func(0)
|
||||
display_func = lambda alpha : self.rotate_func(alpha) + display_val_bias
|
||||
|
||||
base_arrow = Arrow(ORIGIN, RIGHT, buff = 0)
|
||||
|
||||
self.play(
|
||||
FuncRotater(base_arrow, rotate_func = self.rotate_func),
|
||||
ChangingDecimal(num_display, display_func),
|
||||
run_time = self.run_time,
|
||||
rate_func = None)
|
||||
|
||||
#############
|
||||
# Above are mostly general tools; here, we list, in order, finished or near-finished scenes
|
||||
|
||||
@ -853,10 +900,24 @@ class Initial2dFuncSceneWithoutMorphing(Scene):
|
||||
# creature from previous scene, then place it as a simultaneous inset with Premiere)
|
||||
|
||||
class LoopSplitScene(Scene):
|
||||
CONFIG = {
|
||||
"output_func" : plane_poly_with_roots((1, 1))
|
||||
}
|
||||
|
||||
def PulsedLine(self, start, end, bullet_template, num_bullets = 4, pulse_time = 1, **kwargs):
|
||||
def PulsedLine(self,
|
||||
start, end,
|
||||
bullet_template,
|
||||
num_bullets = 4,
|
||||
pulse_time = 1,
|
||||
**kwargs):
|
||||
line = Line(start, end, **kwargs)
|
||||
anim = LinePulser(line, bullet_template, num_bullets, pulse_time, **kwargs)
|
||||
anim = LinePulser(
|
||||
line = line,
|
||||
bullet_template = bullet_template,
|
||||
num_bullets = num_bullets,
|
||||
pulse_time = pulse_time,
|
||||
output_func = self.output_func,
|
||||
**kwargs)
|
||||
return [VGroup(line, *anim.bullets), anim]
|
||||
|
||||
def construct(self):
|
||||
@ -978,8 +1039,8 @@ class LoopSplitSceneMapped(LoopSplitScene):
|
||||
# to illustrate relation between degree and large-scale winding number
|
||||
class FundThmAlg(EquationSolver2d):
|
||||
CONFIG = {
|
||||
"func" : plane_poly_with_roots((1, 2), (-1, 2.5), (-1, 2.5)),
|
||||
"num_iterations" : 1,
|
||||
"func" : plane_poly_with_roots((1, 2), (-1, 1.5), (-1, 1.5)),
|
||||
"num_iterations" : 10,
|
||||
}
|
||||
|
||||
# TODO: Borsuk-Ulam visuals
|
||||
@ -1010,6 +1071,7 @@ class DiffOdometer(OdometerScene):
|
||||
}
|
||||
|
||||
# TODO: Brouwer's fixed point theorem visuals
|
||||
# class BFTScene(Scene):
|
||||
|
||||
# TODO: Pi creatures wide-eyed in amazement
|
||||
|
||||
@ -1023,11 +1085,6 @@ class DiffOdometer(OdometerScene):
|
||||
|
||||
# Writing new Pi walker scenes by parametrizing general template
|
||||
|
||||
# Generalizing Pi walker stuff to make bullets on pulsing lines change colors dynamically according to
|
||||
# function traced out
|
||||
|
||||
# Debugging Pi walker stuff added to EquationSolver2d
|
||||
|
||||
# ----
|
||||
|
||||
# Pi creature emotion stuff
|
||||
@ -1038,6 +1095,7 @@ class DiffOdometer(OdometerScene):
|
||||
|
||||
# Domain coloring
|
||||
|
||||
# TODO: Ask about tracked mobject, which is probably very useful for our animations
|
||||
# TODO: Add to camera an option for low-quality background than other rendering, helpful
|
||||
# for previews
|
||||
|
||||
# FIN
|
||||
|
@ -403,12 +403,17 @@ class Succession(Animation):
|
||||
for anim in animations:
|
||||
anim.update(0)
|
||||
|
||||
animations = filter (lambda x : x.run_time != 0, animations)
|
||||
|
||||
self.run_times = [anim.run_time for anim in animations]
|
||||
if "run_time" in kwargs:
|
||||
run_time = kwargs.pop("run_time")
|
||||
else:
|
||||
run_time = sum(self.run_times)
|
||||
self.num_anims = len(animations) #TODO: If this is zero, some special handling below
|
||||
self.num_anims = len(animations)
|
||||
if self.num_anims == 0:
|
||||
# TODO: Handle this; it should be easy enough, but requires some special cases below
|
||||
print "Warning! Successions with zero animations are not currently handled!"
|
||||
self.animations = animations
|
||||
#Have to keep track of this run_time, because Scene.play
|
||||
#might very well mess with it.
|
||||
@ -429,22 +434,25 @@ class Succession(Animation):
|
||||
|
||||
self.current_alpha = 0
|
||||
self.current_anim_index = 0 #TODO: What if self.num_anims == 0?
|
||||
self.mobject = self.scene_mobjects_at_time[0]
|
||||
self.mobject.add(self.animations[0].mobject)
|
||||
|
||||
self.mobject = Group()
|
||||
self.jump_to_start_of_anim(0)
|
||||
Animation.__init__(self, self.mobject, run_time = run_time, **kwargs)
|
||||
|
||||
# Beware: This does NOT take care of updating the subanimation to 0
|
||||
# This was important to avoid a pernicious possibility in which subanimations were called
|
||||
# with update(0) twice, which could in turn call a sub-Succession with update(0) four times,
|
||||
# continuing exponentially
|
||||
def jump_to_start_of_anim(self, index):
|
||||
if index != self.current_anim_index:
|
||||
self.mobject.remove(*self.mobject.submobjects) # Should probably have a cleaner "remove_all" method...
|
||||
self.mobject.add(self.animations[index].mobject)
|
||||
for m in self.scene_mobjects_at_time[index].submobjects:
|
||||
self.mobject.add(m)
|
||||
|
||||
self.current_anim_index = index
|
||||
self.current_alpha = self.critical_alphas[index]
|
||||
|
||||
self.mobject.remove(*self.mobject.submobjects) # Should probably have a cleaner "remove_all" method...
|
||||
self.mobject.add(self.animations[index].mobject)
|
||||
for m in self.scene_mobjects_at_time[index].submobjects:
|
||||
self.mobject.add(m)
|
||||
|
||||
self.animations[index].update(0)
|
||||
|
||||
def update_mobject(self, alpha):
|
||||
i = 0
|
||||
while self.critical_alphas[i + 1] < alpha:
|
||||
|
@ -385,12 +385,12 @@ class Camera(object):
|
||||
def get_points_of_all_pixels(self):
|
||||
"""
|
||||
Returns an array a such that a[i, j] gives the spatial
|
||||
coordsinates associated with the pixel self.pixel_array[i, j]
|
||||
coordinates associated with the pixel self.pixel_array[i, j]
|
||||
"""
|
||||
shape = self.pixel_array.shape
|
||||
indices = np.indices(shape[:2], dtype = 'float64')
|
||||
all_point_coords = np.zeros((shape[0], shape[1], 3))
|
||||
for i, space_dim in enumerate([SPACE_WIDTH, SPACE_HEIGHT]):
|
||||
for i, space_dim in enumerate([SPACE_HEIGHT, SPACE_WIDTH]):
|
||||
all_point_coords[:,:,i] = \
|
||||
indices[i,:,:]*2*space_dim/shape[i] - space_dim
|
||||
return all_point_coords
|
||||
@ -411,7 +411,7 @@ class Camera(object):
|
||||
lambda p : float_rgba_to_int_rgba(point_to_rgba_func(p)),
|
||||
2, points_of_all_pixels
|
||||
))
|
||||
self.reset()
|
||||
self.reset() # Perhaps this really belongs in set_background?
|
||||
|
||||
|
||||
class MovingCamera(Camera):
|
||||
|
Reference in New Issue
Block a user