mirror of
https://github.com/ipfs/kubo.git
synced 2025-06-27 16:07:42 +08:00
Remove whyrusleeping/chunker from godeps
License: MIT Signed-off-by: Hector Sanjuan <hector@protocol.ai>
This commit is contained in:
4
Godeps/Godeps.json
generated
4
Godeps/Godeps.json
generated
@ -56,10 +56,6 @@
|
||||
{
|
||||
"ImportPath": "github.com/texttheater/golang-levenshtein/levenshtein",
|
||||
"Rev": "dfd657628c58d3eeaa26391097853b2473c8b94e"
|
||||
},
|
||||
{
|
||||
"ImportPath": "github.com/whyrusleeping/chunker",
|
||||
"Rev": "537e901819164627ca4bb5ce4e3faa8ce7956564"
|
||||
}
|
||||
]
|
||||
}
|
||||
|
10
Godeps/_workspace/src/github.com/whyrusleeping/chunker/.travis.yml
generated
vendored
10
Godeps/_workspace/src/github.com/whyrusleeping/chunker/.travis.yml
generated
vendored
@ -1,10 +0,0 @@
|
||||
language: go
|
||||
sudo: false
|
||||
|
||||
go:
|
||||
- 1.3.3
|
||||
- 1.4.2
|
||||
|
||||
os:
|
||||
- linux
|
||||
- osx
|
23
Godeps/_workspace/src/github.com/whyrusleeping/chunker/LICENSE
generated
vendored
23
Godeps/_workspace/src/github.com/whyrusleeping/chunker/LICENSE
generated
vendored
@ -1,23 +0,0 @@
|
||||
Copyright (c) 2014, Alexander Neumann <alexander@bumpern.de>
|
||||
All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are met:
|
||||
|
||||
1. Redistributions of source code must retain the above copyright notice, this
|
||||
list of conditions and the following disclaimer.
|
||||
|
||||
2. Redistributions in binary form must reproduce the above copyright notice,
|
||||
this list of conditions and the following disclaimer in the documentation
|
||||
and/or other materials provided with the distribution.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
||||
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||||
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||||
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
||||
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||||
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||||
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
7
Godeps/_workspace/src/github.com/whyrusleeping/chunker/README.md
generated
vendored
7
Godeps/_workspace/src/github.com/whyrusleeping/chunker/README.md
generated
vendored
@ -1,7 +0,0 @@
|
||||
[](https://travis-ci.org/restic/chunker)
|
||||
|
||||
Content Defined Chunking (CDC) based on a rolling Rabin Checksum.
|
||||
|
||||
Part of https://github.com/restic/restic.
|
||||
|
||||
Better README will follow soon.
|
370
Godeps/_workspace/src/github.com/whyrusleeping/chunker/chunker.go
generated
vendored
370
Godeps/_workspace/src/github.com/whyrusleeping/chunker/chunker.go
generated
vendored
@ -1,370 +0,0 @@
|
||||
package chunker
|
||||
|
||||
import (
|
||||
"errors"
|
||||
"hash"
|
||||
"io"
|
||||
"math"
|
||||
"sync"
|
||||
)
|
||||
|
||||
const (
|
||||
KiB = 1024
|
||||
MiB = 1024 * KiB
|
||||
|
||||
// WindowSize is the size of the sliding window.
|
||||
windowSize = 16
|
||||
|
||||
chunkerBufSize = 512 * KiB
|
||||
)
|
||||
|
||||
var bufPool = sync.Pool{
|
||||
New: func() interface{} { return make([]byte, chunkerBufSize) },
|
||||
}
|
||||
|
||||
type tables struct {
|
||||
out [256]Pol
|
||||
mod [256]Pol
|
||||
}
|
||||
|
||||
// cache precomputed tables, these are read-only anyway
|
||||
var cache struct {
|
||||
entries map[Pol]*tables
|
||||
sync.Mutex
|
||||
}
|
||||
|
||||
func init() {
|
||||
cache.entries = make(map[Pol]*tables)
|
||||
}
|
||||
|
||||
// Chunk is one content-dependent chunk of bytes whose end was cut when the
|
||||
// Rabin Fingerprint had the value stored in Cut.
|
||||
type Chunk struct {
|
||||
Start uint64
|
||||
Length uint64
|
||||
Cut uint64
|
||||
Digest []byte
|
||||
Data []byte
|
||||
}
|
||||
|
||||
func (c Chunk) Reader(r io.ReaderAt) io.Reader {
|
||||
return io.NewSectionReader(r, int64(c.Start), int64(c.Length))
|
||||
}
|
||||
|
||||
// Chunker splits content with Rabin Fingerprints.
|
||||
type Chunker struct {
|
||||
pol Pol
|
||||
polShift uint64
|
||||
tables *tables
|
||||
|
||||
rd io.Reader
|
||||
closed bool
|
||||
|
||||
chunkbuf []byte
|
||||
|
||||
window [windowSize]byte
|
||||
wpos int
|
||||
|
||||
buf []byte
|
||||
bpos uint64
|
||||
bmax uint64
|
||||
|
||||
start uint64
|
||||
count uint64
|
||||
pos uint64
|
||||
|
||||
pre uint64 // wait for this many bytes before start calculating an new chunk
|
||||
|
||||
digest uint64
|
||||
h hash.Hash
|
||||
|
||||
sizeMask uint64
|
||||
|
||||
// minimal and maximal size of the outputted blocks
|
||||
MinSize uint64
|
||||
MaxSize uint64
|
||||
}
|
||||
|
||||
// New returns a new Chunker based on polynomial p that reads from rd
|
||||
// with bufsize and pass all data to hash along the way.
|
||||
func New(rd io.Reader, pol Pol, h hash.Hash, avSize, min, max uint64) *Chunker {
|
||||
|
||||
sizepow := uint(math.Log2(float64(avSize)))
|
||||
|
||||
c := &Chunker{
|
||||
buf: bufPool.Get().([]byte),
|
||||
h: h,
|
||||
pol: pol,
|
||||
rd: rd,
|
||||
chunkbuf: make([]byte, 0, max),
|
||||
sizeMask: (1 << sizepow) - 1,
|
||||
|
||||
MinSize: min,
|
||||
MaxSize: max,
|
||||
}
|
||||
|
||||
c.reset()
|
||||
|
||||
return c
|
||||
}
|
||||
|
||||
func (c *Chunker) reset() {
|
||||
c.polShift = uint64(c.pol.Deg() - 8)
|
||||
c.fillTables()
|
||||
|
||||
for i := 0; i < windowSize; i++ {
|
||||
c.window[i] = 0
|
||||
}
|
||||
|
||||
c.closed = false
|
||||
c.digest = 0
|
||||
c.wpos = 0
|
||||
c.count = 0
|
||||
c.slide(1)
|
||||
c.start = c.pos
|
||||
|
||||
if c.h != nil {
|
||||
c.h.Reset()
|
||||
}
|
||||
|
||||
// do not start a new chunk unless at least MinSize bytes have been read
|
||||
c.pre = c.MinSize - windowSize
|
||||
}
|
||||
|
||||
// Calculate out_table and mod_table for optimization. Must be called only
|
||||
// once. This implementation uses a cache in the global variable cache.
|
||||
func (c *Chunker) fillTables() {
|
||||
// if polynomial hasn't been specified, do not compute anything for now
|
||||
if c.pol == 0 {
|
||||
return
|
||||
}
|
||||
|
||||
// test if the tables are cached for this polynomial
|
||||
cache.Lock()
|
||||
defer cache.Unlock()
|
||||
if t, ok := cache.entries[c.pol]; ok {
|
||||
c.tables = t
|
||||
return
|
||||
}
|
||||
|
||||
// else create a new entry
|
||||
c.tables = &tables{}
|
||||
cache.entries[c.pol] = c.tables
|
||||
|
||||
// calculate table for sliding out bytes. The byte to slide out is used as
|
||||
// the index for the table, the value contains the following:
|
||||
// out_table[b] = Hash(b || 0 || ... || 0)
|
||||
// \ windowsize-1 zero bytes /
|
||||
// To slide out byte b_0 for window size w with known hash
|
||||
// H := H(b_0 || ... || b_w), it is sufficient to add out_table[b_0]:
|
||||
// H(b_0 || ... || b_w) + H(b_0 || 0 || ... || 0)
|
||||
// = H(b_0 + b_0 || b_1 + 0 || ... || b_w + 0)
|
||||
// = H( 0 || b_1 || ... || b_w)
|
||||
//
|
||||
// Afterwards a new byte can be shifted in.
|
||||
for b := 0; b < 256; b++ {
|
||||
var h Pol
|
||||
|
||||
h = appendByte(h, byte(b), c.pol)
|
||||
for i := 0; i < windowSize-1; i++ {
|
||||
h = appendByte(h, 0, c.pol)
|
||||
}
|
||||
c.tables.out[b] = h
|
||||
}
|
||||
|
||||
// calculate table for reduction mod Polynomial
|
||||
k := c.pol.Deg()
|
||||
for b := 0; b < 256; b++ {
|
||||
// mod_table[b] = A | B, where A = (b(x) * x^k mod pol) and B = b(x) * x^k
|
||||
//
|
||||
// The 8 bits above deg(Polynomial) determine what happens next and so
|
||||
// these bits are used as a lookup to this table. The value is split in
|
||||
// two parts: Part A contains the result of the modulus operation, part
|
||||
// B is used to cancel out the 8 top bits so that one XOR operation is
|
||||
// enough to reduce modulo Polynomial
|
||||
c.tables.mod[b] = Pol(uint64(b)<<uint64(k)).Mod(c.pol) | (Pol(b) << uint64(k))
|
||||
}
|
||||
}
|
||||
|
||||
func (c *Chunker) nextBytes() []byte {
|
||||
data := dupBytes(c.chunkbuf[:c.count])
|
||||
n := copy(c.chunkbuf, c.chunkbuf[c.count:])
|
||||
c.chunkbuf = c.chunkbuf[:n]
|
||||
|
||||
return data
|
||||
}
|
||||
|
||||
// Next returns the position and length of the next chunk of data. If an error
|
||||
// occurs while reading, the error is returned with a nil chunk. The state of
|
||||
// the current chunk is undefined. When the last chunk has been returned, all
|
||||
// subsequent calls yield a nil chunk and an io.EOF error.
|
||||
func (c *Chunker) Next() (*Chunk, error) {
|
||||
if c.tables == nil {
|
||||
return nil, errors.New("polynomial is not set")
|
||||
}
|
||||
|
||||
for {
|
||||
if c.bpos >= c.bmax {
|
||||
n, err := io.ReadFull(c.rd, c.buf[:])
|
||||
c.chunkbuf = append(c.chunkbuf, c.buf[:n]...)
|
||||
|
||||
if err == io.ErrUnexpectedEOF {
|
||||
err = nil
|
||||
}
|
||||
|
||||
// io.ReadFull only returns io.EOF when no bytes could be read. If
|
||||
// this is the case and we're in this branch, there are no more
|
||||
// bytes to buffer, so this was the last chunk. If a different
|
||||
// error has occurred, return that error and abandon the current
|
||||
// chunk.
|
||||
if err == io.EOF && !c.closed {
|
||||
c.closed = true
|
||||
|
||||
// return the buffer to the pool
|
||||
bufPool.Put(c.buf)
|
||||
|
||||
data := c.nextBytes()
|
||||
|
||||
// return current chunk, if any bytes have been processed
|
||||
if c.count > 0 {
|
||||
return &Chunk{
|
||||
Start: c.start,
|
||||
Length: c.count,
|
||||
Cut: c.digest,
|
||||
Digest: c.hashDigest(),
|
||||
Data: data,
|
||||
}, nil
|
||||
}
|
||||
}
|
||||
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
c.bpos = 0
|
||||
c.bmax = uint64(n)
|
||||
}
|
||||
|
||||
// check if bytes have to be dismissed before starting a new chunk
|
||||
if c.pre > 0 {
|
||||
n := c.bmax - c.bpos
|
||||
if c.pre > uint64(n) {
|
||||
c.pre -= uint64(n)
|
||||
c.updateHash(c.buf[c.bpos:c.bmax])
|
||||
|
||||
c.count += uint64(n)
|
||||
c.pos += uint64(n)
|
||||
c.bpos = c.bmax
|
||||
|
||||
continue
|
||||
}
|
||||
|
||||
c.updateHash(c.buf[c.bpos : c.bpos+c.pre])
|
||||
|
||||
c.bpos += c.pre
|
||||
c.count += c.pre
|
||||
c.pos += c.pre
|
||||
c.pre = 0
|
||||
}
|
||||
|
||||
add := c.count
|
||||
for _, b := range c.buf[c.bpos:c.bmax] {
|
||||
// inline c.slide(b) and append(b) to increase performance
|
||||
out := c.window[c.wpos]
|
||||
c.window[c.wpos] = b
|
||||
c.digest ^= uint64(c.tables.out[out])
|
||||
c.wpos = (c.wpos + 1) % windowSize
|
||||
|
||||
// c.append(b)
|
||||
index := c.digest >> c.polShift
|
||||
c.digest <<= 8
|
||||
c.digest |= uint64(b)
|
||||
|
||||
c.digest ^= uint64(c.tables.mod[index])
|
||||
// end inline
|
||||
|
||||
add++
|
||||
if add < c.MinSize {
|
||||
continue
|
||||
}
|
||||
|
||||
if (c.digest&c.sizeMask) == 0 || add >= c.MaxSize {
|
||||
i := add - c.count - 1
|
||||
c.updateHash(c.buf[c.bpos : c.bpos+uint64(i)+1])
|
||||
c.count = add
|
||||
c.pos += uint64(i) + 1
|
||||
c.bpos += uint64(i) + 1
|
||||
|
||||
data := c.nextBytes()
|
||||
|
||||
chunk := &Chunk{
|
||||
Start: c.start,
|
||||
Length: c.count,
|
||||
Cut: c.digest,
|
||||
Digest: c.hashDigest(),
|
||||
Data: data,
|
||||
}
|
||||
|
||||
c.reset()
|
||||
|
||||
return chunk, nil
|
||||
}
|
||||
}
|
||||
|
||||
steps := c.bmax - c.bpos
|
||||
if steps > 0 {
|
||||
c.updateHash(c.buf[c.bpos : c.bpos+steps])
|
||||
}
|
||||
c.count += steps
|
||||
c.pos += steps
|
||||
c.bpos = c.bmax
|
||||
}
|
||||
}
|
||||
|
||||
func dupBytes(b []byte) []byte {
|
||||
out := make([]byte, len(b))
|
||||
copy(out, b)
|
||||
return out
|
||||
}
|
||||
|
||||
func (c *Chunker) updateHash(data []byte) {
|
||||
if c.h != nil {
|
||||
// the hashes from crypto/sha* do not return an error
|
||||
_, err := c.h.Write(data)
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func (c *Chunker) hashDigest() []byte {
|
||||
if c.h == nil {
|
||||
return nil
|
||||
}
|
||||
|
||||
return c.h.Sum(nil)
|
||||
}
|
||||
|
||||
func (c *Chunker) append(b byte) {
|
||||
index := c.digest >> c.polShift
|
||||
c.digest <<= 8
|
||||
c.digest |= uint64(b)
|
||||
|
||||
c.digest ^= uint64(c.tables.mod[index])
|
||||
}
|
||||
|
||||
func (c *Chunker) slide(b byte) {
|
||||
out := c.window[c.wpos]
|
||||
c.window[c.wpos] = b
|
||||
c.digest ^= uint64(c.tables.out[out])
|
||||
c.wpos = (c.wpos + 1) % windowSize
|
||||
|
||||
c.append(b)
|
||||
}
|
||||
|
||||
func appendByte(hash Pol, b byte, pol Pol) Pol {
|
||||
hash <<= 8
|
||||
hash |= Pol(b)
|
||||
|
||||
return hash.Mod(pol)
|
||||
}
|
298
Godeps/_workspace/src/github.com/whyrusleeping/chunker/chunker_test.go
generated
vendored
298
Godeps/_workspace/src/github.com/whyrusleeping/chunker/chunker_test.go
generated
vendored
@ -1,298 +0,0 @@
|
||||
package chunker_test
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"crypto/md5"
|
||||
"crypto/sha256"
|
||||
"encoding/hex"
|
||||
"hash"
|
||||
"io"
|
||||
"io/ioutil"
|
||||
"math/rand"
|
||||
"testing"
|
||||
"time"
|
||||
|
||||
"github.com/restic/chunker"
|
||||
. "github.com/restic/restic/test"
|
||||
)
|
||||
|
||||
func parseDigest(s string) []byte {
|
||||
d, err := hex.DecodeString(s)
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
|
||||
return d
|
||||
}
|
||||
|
||||
type chunk struct {
|
||||
Length uint
|
||||
CutFP uint64
|
||||
Digest []byte
|
||||
}
|
||||
|
||||
// polynomial used for all the tests below
|
||||
const testPol = chunker.Pol(0x3DA3358B4DC173)
|
||||
|
||||
// created for 32MB of random data out of math/rand's Uint32() seeded by
|
||||
// constant 23
|
||||
//
|
||||
// chunking configuration:
|
||||
// window size 64, avg chunksize 1<<20, min chunksize 1<<19, max chunksize 1<<23
|
||||
// polynom 0x3DA3358B4DC173
|
||||
var chunks1 = []chunk{
|
||||
chunk{2163460, 0x000b98d4cdf00000, parseDigest("4b94cb2cf293855ea43bf766731c74969b91aa6bf3c078719aabdd19860d590d")},
|
||||
chunk{643703, 0x000d4e8364d00000, parseDigest("5727a63c0964f365ab8ed2ccf604912f2ea7be29759a2b53ede4d6841e397407")},
|
||||
chunk{1528956, 0x0015a25c2ef00000, parseDigest("a73759636a1e7a2758767791c69e81b69fb49236c6929e5d1b654e06e37674ba")},
|
||||
chunk{1955808, 0x00102a8242e00000, parseDigest("c955fb059409b25f07e5ae09defbbc2aadf117c97a3724e06ad4abd2787e6824")},
|
||||
chunk{2222372, 0x00045da878000000, parseDigest("6ba5e9f7e1b310722be3627716cf469be941f7f3e39a4c3bcefea492ec31ee56")},
|
||||
chunk{2538687, 0x00198a8179900000, parseDigest("8687937412f654b5cfe4a82b08f28393a0c040f77c6f95e26742c2fc4254bfde")},
|
||||
chunk{609606, 0x001d4e8d17100000, parseDigest("5da820742ff5feb3369112938d3095785487456f65a8efc4b96dac4be7ebb259")},
|
||||
chunk{1205738, 0x000a7204dd600000, parseDigest("cc70d8fad5472beb031b1aca356bcab86c7368f40faa24fe5f8922c6c268c299")},
|
||||
chunk{959742, 0x00183e71e1400000, parseDigest("4065bdd778f95676c92b38ac265d361f81bff17d76e5d9452cf985a2ea5a4e39")},
|
||||
chunk{4036109, 0x001fec043c700000, parseDigest("b9cf166e75200eb4993fc9b6e22300a6790c75e6b0fc8f3f29b68a752d42f275")},
|
||||
chunk{1525894, 0x000b1574b1500000, parseDigest("2f238180e4ca1f7520a05f3d6059233926341090f9236ce677690c1823eccab3")},
|
||||
chunk{1352720, 0x00018965f2e00000, parseDigest("afd12f13286a3901430de816e62b85cc62468c059295ce5888b76b3af9028d84")},
|
||||
chunk{811884, 0x00155628aa100000, parseDigest("42d0cdb1ee7c48e552705d18e061abb70ae7957027db8ae8db37ec756472a70a")},
|
||||
chunk{1282314, 0x001909a0a1400000, parseDigest("819721c2457426eb4f4c7565050c44c32076a56fa9b4515a1c7796441730eb58")},
|
||||
chunk{1318021, 0x001cceb980000000, parseDigest("842eb53543db55bacac5e25cb91e43cc2e310fe5f9acc1aee86bdf5e91389374")},
|
||||
chunk{948640, 0x0011f7a470a00000, parseDigest("b8e36bf7019bb96ac3fb7867659d2167d9d3b3148c09fe0de45850b8fe577185")},
|
||||
chunk{645464, 0x00030ce2d9400000, parseDigest("5584bd27982191c3329f01ed846bfd266e96548dfa87018f745c33cfc240211d")},
|
||||
chunk{533758, 0x0004435c53c00000, parseDigest("4da778a25b72a9a0d53529eccfe2e5865a789116cb1800f470d8df685a8ab05d")},
|
||||
chunk{1128303, 0x0000c48517800000, parseDigest("08c6b0b38095b348d80300f0be4c5184d2744a17147c2cba5cc4315abf4c048f")},
|
||||
chunk{800374, 0x000968473f900000, parseDigest("820284d2c8fd243429674c996d8eb8d3450cbc32421f43113e980f516282c7bf")},
|
||||
chunk{2453512, 0x001e197c92600000, parseDigest("5fa870ed107c67704258e5e50abe67509fb73562caf77caa843b5f243425d853")},
|
||||
chunk{2651975, 0x000ae6c868000000, parseDigest("181347d2bbec32bef77ad5e9001e6af80f6abcf3576549384d334ee00c1988d8")},
|
||||
chunk{237392, 0x0000000000000001, parseDigest("fcd567f5d866357a8e299fd5b2359bb2c8157c30395229c4e9b0a353944a7978")},
|
||||
}
|
||||
|
||||
// test if nullbytes are correctly split, even if length is a multiple of MinSize.
|
||||
var chunks2 = []chunk{
|
||||
chunk{chunker.MinSize, 0, parseDigest("07854d2fef297a06ba81685e660c332de36d5d18d546927d30daad6d7fda1541")},
|
||||
chunk{chunker.MinSize, 0, parseDigest("07854d2fef297a06ba81685e660c332de36d5d18d546927d30daad6d7fda1541")},
|
||||
chunk{chunker.MinSize, 0, parseDigest("07854d2fef297a06ba81685e660c332de36d5d18d546927d30daad6d7fda1541")},
|
||||
chunk{chunker.MinSize, 0, parseDigest("07854d2fef297a06ba81685e660c332de36d5d18d546927d30daad6d7fda1541")},
|
||||
}
|
||||
|
||||
func testWithData(t *testing.T, chnker *chunker.Chunker, testChunks []chunk) []*chunker.Chunk {
|
||||
chunks := []*chunker.Chunk{}
|
||||
|
||||
pos := uint(0)
|
||||
for i, chunk := range testChunks {
|
||||
c, err := chnker.Next()
|
||||
|
||||
if err != nil {
|
||||
t.Fatalf("Error returned with chunk %d: %v", i, err)
|
||||
}
|
||||
|
||||
if c == nil {
|
||||
t.Fatalf("Nil chunk returned")
|
||||
}
|
||||
|
||||
if c != nil {
|
||||
if c.Start != pos {
|
||||
t.Fatalf("Start for chunk %d does not match: expected %d, got %d",
|
||||
i, pos, c.Start)
|
||||
}
|
||||
|
||||
if c.Length != chunk.Length {
|
||||
t.Fatalf("Length for chunk %d does not match: expected %d, got %d",
|
||||
i, chunk.Length, c.Length)
|
||||
}
|
||||
|
||||
if c.Cut != chunk.CutFP {
|
||||
t.Fatalf("Cut fingerprint for chunk %d/%d does not match: expected %016x, got %016x",
|
||||
i, len(chunks)-1, chunk.CutFP, c.Cut)
|
||||
}
|
||||
|
||||
if c.Digest != nil && !bytes.Equal(c.Digest, chunk.Digest) {
|
||||
t.Fatalf("Digest fingerprint for chunk %d/%d does not match: expected %02x, got %02x",
|
||||
i, len(chunks)-1, chunk.Digest, c.Digest)
|
||||
}
|
||||
|
||||
pos += c.Length
|
||||
chunks = append(chunks, c)
|
||||
}
|
||||
}
|
||||
|
||||
c, err := chnker.Next()
|
||||
|
||||
if c != nil {
|
||||
t.Fatal("additional non-nil chunk returned")
|
||||
}
|
||||
|
||||
if err != io.EOF {
|
||||
t.Fatal("wrong error returned after last chunk")
|
||||
}
|
||||
|
||||
return chunks
|
||||
}
|
||||
|
||||
func getRandom(seed, count int) []byte {
|
||||
buf := make([]byte, count)
|
||||
|
||||
rnd := rand.New(rand.NewSource(23))
|
||||
for i := 0; i < count; i += 4 {
|
||||
r := rnd.Uint32()
|
||||
buf[i] = byte(r)
|
||||
buf[i+1] = byte(r >> 8)
|
||||
buf[i+2] = byte(r >> 16)
|
||||
buf[i+3] = byte(r >> 24)
|
||||
}
|
||||
|
||||
return buf
|
||||
}
|
||||
|
||||
func TestChunker(t *testing.T) {
|
||||
// setup data source
|
||||
buf := getRandom(23, 32*1024*1024)
|
||||
ch := chunker.New(bytes.NewReader(buf), testPol, sha256.New())
|
||||
chunks := testWithData(t, ch, chunks1)
|
||||
|
||||
// test reader
|
||||
for i, c := range chunks {
|
||||
rd := c.Reader(bytes.NewReader(buf))
|
||||
|
||||
h := sha256.New()
|
||||
n, err := io.Copy(h, rd)
|
||||
if err != nil {
|
||||
t.Fatalf("io.Copy(): %v", err)
|
||||
}
|
||||
|
||||
if uint(n) != chunks1[i].Length {
|
||||
t.Fatalf("reader returned wrong number of bytes: expected %d, got %d",
|
||||
chunks1[i].Length, n)
|
||||
}
|
||||
|
||||
d := h.Sum(nil)
|
||||
if !bytes.Equal(d, chunks1[i].Digest) {
|
||||
t.Fatalf("wrong hash returned: expected %02x, got %02x",
|
||||
chunks1[i].Digest, d)
|
||||
}
|
||||
}
|
||||
|
||||
// setup nullbyte data source
|
||||
buf = bytes.Repeat([]byte{0}, len(chunks2)*chunker.MinSize)
|
||||
ch = chunker.New(bytes.NewReader(buf), testPol, sha256.New())
|
||||
|
||||
testWithData(t, ch, chunks2)
|
||||
}
|
||||
|
||||
func TestChunkerWithRandomPolynomial(t *testing.T) {
|
||||
// setup data source
|
||||
buf := getRandom(23, 32*1024*1024)
|
||||
|
||||
// generate a new random polynomial
|
||||
start := time.Now()
|
||||
p, err := chunker.RandomPolynomial()
|
||||
OK(t, err)
|
||||
t.Logf("generating random polynomial took %v", time.Since(start))
|
||||
|
||||
start = time.Now()
|
||||
ch := chunker.New(bytes.NewReader(buf), p, sha256.New())
|
||||
t.Logf("creating chunker took %v", time.Since(start))
|
||||
|
||||
// make sure that first chunk is different
|
||||
c, err := ch.Next()
|
||||
|
||||
Assert(t, c.Cut != chunks1[0].CutFP,
|
||||
"Cut point is the same")
|
||||
Assert(t, c.Length != chunks1[0].Length,
|
||||
"Length is the same")
|
||||
Assert(t, !bytes.Equal(c.Digest, chunks1[0].Digest),
|
||||
"Digest is the same")
|
||||
}
|
||||
|
||||
func TestChunkerWithoutHash(t *testing.T) {
|
||||
// setup data source
|
||||
buf := getRandom(23, 32*1024*1024)
|
||||
|
||||
ch := chunker.New(bytes.NewReader(buf), testPol, nil)
|
||||
chunks := testWithData(t, ch, chunks1)
|
||||
|
||||
// test reader
|
||||
for i, c := range chunks {
|
||||
rd := c.Reader(bytes.NewReader(buf))
|
||||
|
||||
buf2, err := ioutil.ReadAll(rd)
|
||||
if err != nil {
|
||||
t.Fatalf("io.Copy(): %v", err)
|
||||
}
|
||||
|
||||
if uint(len(buf2)) != chunks1[i].Length {
|
||||
t.Fatalf("reader returned wrong number of bytes: expected %d, got %d",
|
||||
chunks1[i].Length, uint(len(buf2)))
|
||||
}
|
||||
|
||||
if uint(len(buf2)) != chunks1[i].Length {
|
||||
t.Fatalf("wrong number of bytes returned: expected %02x, got %02x",
|
||||
chunks[i].Length, len(buf2))
|
||||
}
|
||||
|
||||
if !bytes.Equal(buf[c.Start:c.Start+c.Length], buf2) {
|
||||
t.Fatalf("invalid data for chunk returned: expected %02x, got %02x",
|
||||
buf[c.Start:c.Start+c.Length], buf2)
|
||||
}
|
||||
}
|
||||
|
||||
// setup nullbyte data source
|
||||
buf = bytes.Repeat([]byte{0}, len(chunks2)*chunker.MinSize)
|
||||
ch = chunker.New(bytes.NewReader(buf), testPol, sha256.New())
|
||||
|
||||
testWithData(t, ch, chunks2)
|
||||
}
|
||||
|
||||
func benchmarkChunker(b *testing.B, hash hash.Hash) {
|
||||
size := 10 * 1024 * 1024
|
||||
rd := bytes.NewReader(getRandom(23, size))
|
||||
|
||||
b.ResetTimer()
|
||||
b.SetBytes(int64(size))
|
||||
|
||||
var chunks int
|
||||
for i := 0; i < b.N; i++ {
|
||||
chunks = 0
|
||||
|
||||
rd.Seek(0, 0)
|
||||
ch := chunker.New(rd, testPol, hash)
|
||||
|
||||
for {
|
||||
_, err := ch.Next()
|
||||
|
||||
if err == io.EOF {
|
||||
break
|
||||
}
|
||||
|
||||
if err != nil {
|
||||
b.Fatalf("Unexpected error occurred: %v", err)
|
||||
}
|
||||
|
||||
chunks++
|
||||
}
|
||||
}
|
||||
|
||||
b.Logf("%d chunks, average chunk size: %d bytes", chunks, size/chunks)
|
||||
}
|
||||
|
||||
func BenchmarkChunkerWithSHA256(b *testing.B) {
|
||||
benchmarkChunker(b, sha256.New())
|
||||
}
|
||||
|
||||
func BenchmarkChunkerWithMD5(b *testing.B) {
|
||||
benchmarkChunker(b, md5.New())
|
||||
}
|
||||
|
||||
func BenchmarkChunker(b *testing.B) {
|
||||
benchmarkChunker(b, nil)
|
||||
}
|
||||
|
||||
func BenchmarkNewChunker(b *testing.B) {
|
||||
p, err := chunker.RandomPolynomial()
|
||||
OK(b, err)
|
||||
|
||||
b.ResetTimer()
|
||||
|
||||
for i := 0; i < b.N; i++ {
|
||||
chunker.New(bytes.NewBuffer(nil), p, nil)
|
||||
}
|
||||
}
|
82
Godeps/_workspace/src/github.com/whyrusleeping/chunker/doc.go
generated
vendored
82
Godeps/_workspace/src/github.com/whyrusleeping/chunker/doc.go
generated
vendored
@ -1,82 +0,0 @@
|
||||
// Copyright 2014 Alexander Neumann. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
/*
|
||||
Package chunker implements Content Defined Chunking (CDC) based on a rolling
|
||||
Rabin Checksum.
|
||||
|
||||
Choosing a Random Irreducible Polynomial
|
||||
|
||||
The function RandomPolynomial() returns a new random polynomial of degree 53
|
||||
for use with the chunker. The degree 53 is chosen because it is the largest
|
||||
prime below 64-8 = 56, so that the top 8 bits of an uint64 can be used for
|
||||
optimising calculations in the chunker.
|
||||
|
||||
A random polynomial is chosen selecting 64 random bits, masking away bits
|
||||
64..54 and setting bit 53 to one (otherwise the polynomial is not of the
|
||||
desired degree) and bit 0 to one (otherwise the polynomial is trivially
|
||||
reducible), so that 51 bits are chosen at random.
|
||||
|
||||
This process is repeated until Irreducible() returns true, then this
|
||||
polynomials is returned. If this doesn't happen after 1 million tries, the
|
||||
function returns an error. The probability for selecting an irreducible
|
||||
polynomial at random is about 7.5% ( (2^53-2)/53 / 2^51), so the probability
|
||||
that no irreducible polynomial has been found after 100 tries is lower than
|
||||
0.04%.
|
||||
|
||||
Verifying Irreducible Polynomials
|
||||
|
||||
During development the results have been verified using the computational
|
||||
discrete algebra system GAP, which can be obtained from the website at
|
||||
http://www.gap-system.org/.
|
||||
|
||||
For filtering a given list of polynomials in hexadecimal coefficient notation,
|
||||
the following script can be used:
|
||||
|
||||
# create x over F_2 = GF(2)
|
||||
x := Indeterminate(GF(2), "x");
|
||||
|
||||
# test if polynomial is irreducible, i.e. the number of factors is one
|
||||
IrredPoly := function (poly)
|
||||
return (Length(Factors(poly)) = 1);
|
||||
end;;
|
||||
|
||||
# create a polynomial in x from the hexadecimal representation of the
|
||||
# coefficients
|
||||
Hex2Poly := function (s)
|
||||
return ValuePol(CoefficientsQadic(IntHexString(s), 2), x);
|
||||
end;;
|
||||
|
||||
# list of candidates, in hex
|
||||
candidates := [ "3DA3358B4DC173" ];
|
||||
|
||||
# create real polynomials
|
||||
L := List(candidates, Hex2Poly);
|
||||
|
||||
# filter and display the list of irreducible polynomials contained in L
|
||||
Display(Filtered(L, x -> (IrredPoly(x))));
|
||||
|
||||
All irreducible polynomials from the list are written to the output.
|
||||
|
||||
Background Literature
|
||||
|
||||
An introduction to Rabin Fingerprints/Checksums can be found in the following articles:
|
||||
|
||||
Michael O. Rabin (1981): "Fingerprinting by Random Polynomials"
|
||||
http://www.xmailserver.org/rabin.pdf
|
||||
|
||||
Ross N. Williams (1993): "A Painless Guide to CRC Error Detection Algorithms"
|
||||
http://www.zlib.net/crc_v3.txt
|
||||
|
||||
Andrei Z. Broder (1993): "Some Applications of Rabin's Fingerprinting Method"
|
||||
http://www.xmailserver.org/rabin_apps.pdf
|
||||
|
||||
Shuhong Gao and Daniel Panario (1997): "Tests and Constructions of Irreducible Polynomials over Finite Fields"
|
||||
http://www.math.clemson.edu/~sgao/papers/GP97a.pdf
|
||||
|
||||
Andrew Kadatch, Bob Jenkins (2007): "Everything we know about CRC but afraid to forget"
|
||||
http://crcutil.googlecode.com/files/crc-doc.1.0.pdf
|
||||
|
||||
*/
|
||||
package chunker
|
278
Godeps/_workspace/src/github.com/whyrusleeping/chunker/polynomials.go
generated
vendored
278
Godeps/_workspace/src/github.com/whyrusleeping/chunker/polynomials.go
generated
vendored
@ -1,278 +0,0 @@
|
||||
package chunker
|
||||
|
||||
import (
|
||||
"crypto/rand"
|
||||
"encoding/binary"
|
||||
"errors"
|
||||
"fmt"
|
||||
"strconv"
|
||||
)
|
||||
|
||||
// Pol is a polynomial from F_2[X].
|
||||
type Pol uint64
|
||||
|
||||
// Add returns x+y.
|
||||
func (x Pol) Add(y Pol) Pol {
|
||||
r := Pol(uint64(x) ^ uint64(y))
|
||||
return r
|
||||
}
|
||||
|
||||
// mulOverflows returns true if the multiplication would overflow uint64.
|
||||
// Code by Rob Pike, see
|
||||
// https://groups.google.com/d/msg/golang-nuts/h5oSN5t3Au4/KaNQREhZh0QJ
|
||||
func mulOverflows(a, b Pol) bool {
|
||||
if a <= 1 || b <= 1 {
|
||||
return false
|
||||
}
|
||||
c := a.mul(b)
|
||||
d := c.Div(b)
|
||||
if d != a {
|
||||
return true
|
||||
}
|
||||
|
||||
return false
|
||||
}
|
||||
|
||||
func (x Pol) mul(y Pol) Pol {
|
||||
if x == 0 || y == 0 {
|
||||
return 0
|
||||
}
|
||||
|
||||
var res Pol
|
||||
for i := 0; i <= y.Deg(); i++ {
|
||||
if (y & (1 << uint(i))) > 0 {
|
||||
res = res.Add(x << uint(i))
|
||||
}
|
||||
}
|
||||
|
||||
return res
|
||||
}
|
||||
|
||||
// Mul returns x*y. When an overflow occurs, Mul panics.
|
||||
func (x Pol) Mul(y Pol) Pol {
|
||||
if mulOverflows(x, y) {
|
||||
panic("multiplication would overflow uint64")
|
||||
}
|
||||
|
||||
return x.mul(y)
|
||||
}
|
||||
|
||||
// Deg returns the degree of the polynomial x. If x is zero, -1 is returned.
|
||||
func (x Pol) Deg() int {
|
||||
// the degree of 0 is -1
|
||||
if x == 0 {
|
||||
return -1
|
||||
}
|
||||
|
||||
var mask Pol = (1 << 63)
|
||||
for i := 63; i >= 0; i-- {
|
||||
// test if bit i is set
|
||||
if x&mask > 0 {
|
||||
// this is the degree of x
|
||||
return i
|
||||
}
|
||||
mask >>= 1
|
||||
}
|
||||
|
||||
// fall-through, return -1
|
||||
return -1
|
||||
}
|
||||
|
||||
// String returns the coefficients in hex.
|
||||
func (x Pol) String() string {
|
||||
return "0x" + strconv.FormatUint(uint64(x), 16)
|
||||
}
|
||||
|
||||
// Expand returns the string representation of the polynomial x.
|
||||
func (x Pol) Expand() string {
|
||||
if x == 0 {
|
||||
return "0"
|
||||
}
|
||||
|
||||
s := ""
|
||||
for i := x.Deg(); i > 1; i-- {
|
||||
if x&(1<<uint(i)) > 0 {
|
||||
s += fmt.Sprintf("+x^%d", i)
|
||||
}
|
||||
}
|
||||
|
||||
if x&2 > 0 {
|
||||
s += "+x"
|
||||
}
|
||||
|
||||
if x&1 > 0 {
|
||||
s += "+1"
|
||||
}
|
||||
|
||||
return s[1:]
|
||||
}
|
||||
|
||||
// DivMod returns x / d = q, and remainder r,
|
||||
// see https://en.wikipedia.org/wiki/Division_algorithm
|
||||
func (x Pol) DivMod(d Pol) (Pol, Pol) {
|
||||
if x == 0 {
|
||||
return 0, 0
|
||||
}
|
||||
|
||||
if d == 0 {
|
||||
panic("division by zero")
|
||||
}
|
||||
|
||||
D := d.Deg()
|
||||
diff := x.Deg() - D
|
||||
if diff < 0 {
|
||||
return 0, x
|
||||
}
|
||||
|
||||
var q Pol
|
||||
for diff >= 0 {
|
||||
m := d << uint(diff)
|
||||
q |= (1 << uint(diff))
|
||||
x = x.Add(m)
|
||||
|
||||
diff = x.Deg() - D
|
||||
}
|
||||
|
||||
return q, x
|
||||
}
|
||||
|
||||
// Div returns the integer division result x / d.
|
||||
func (x Pol) Div(d Pol) Pol {
|
||||
q, _ := x.DivMod(d)
|
||||
return q
|
||||
}
|
||||
|
||||
// Mod returns the remainder of x / d
|
||||
func (x Pol) Mod(d Pol) Pol {
|
||||
_, r := x.DivMod(d)
|
||||
return r
|
||||
}
|
||||
|
||||
// I really dislike having a function that does not terminate, so specify a
|
||||
// really large upper bound for finding a new irreducible polynomial, and
|
||||
// return an error when no irreducible polynomial has been found within
|
||||
// randPolMaxTries.
|
||||
const randPolMaxTries = 1e6
|
||||
|
||||
// RandomPolynomial returns a new random irreducible polynomial of degree 53
|
||||
// (largest prime number below 64-8). There are (2^53-2/53) irreducible
|
||||
// polynomials of degree 53 in F_2[X], c.f. Michael O. Rabin (1981):
|
||||
// "Fingerprinting by Random Polynomials", page 4. If no polynomial could be
|
||||
// found in one million tries, an error is returned.
|
||||
func RandomPolynomial() (Pol, error) {
|
||||
for i := 0; i < randPolMaxTries; i++ {
|
||||
var f Pol
|
||||
|
||||
// choose polynomial at random
|
||||
err := binary.Read(rand.Reader, binary.LittleEndian, &f)
|
||||
if err != nil {
|
||||
return 0, err
|
||||
}
|
||||
|
||||
// mask away bits above bit 53
|
||||
f &= Pol((1 << 54) - 1)
|
||||
|
||||
// set highest and lowest bit so that the degree is 53 and the
|
||||
// polynomial is not trivially reducible
|
||||
f |= (1 << 53) | 1
|
||||
|
||||
// test if f is irreducible
|
||||
if f.Irreducible() {
|
||||
return f, nil
|
||||
}
|
||||
}
|
||||
|
||||
// If this is reached, we haven't found an irreducible polynomial in
|
||||
// randPolMaxTries. This error is very unlikely to occur.
|
||||
return 0, errors.New("unable to find new random irreducible polynomial")
|
||||
}
|
||||
|
||||
// GCD computes the Greatest Common Divisor x and f.
|
||||
func (x Pol) GCD(f Pol) Pol {
|
||||
if f == 0 {
|
||||
return x
|
||||
}
|
||||
|
||||
if x == 0 {
|
||||
return f
|
||||
}
|
||||
|
||||
if x.Deg() < f.Deg() {
|
||||
x, f = f, x
|
||||
}
|
||||
|
||||
return f.GCD(x.Mod(f))
|
||||
}
|
||||
|
||||
// Irreducible returns true iff x is irreducible over F_2. This function
|
||||
// uses Ben Or's reducibility test.
|
||||
//
|
||||
// For details see "Tests and Constructions of Irreducible Polynomials over
|
||||
// Finite Fields".
|
||||
func (x Pol) Irreducible() bool {
|
||||
for i := 1; i <= x.Deg()/2; i++ {
|
||||
if x.GCD(qp(uint(i), x)) != 1 {
|
||||
return false
|
||||
}
|
||||
}
|
||||
|
||||
return true
|
||||
}
|
||||
|
||||
// MulMod computes x*f mod g
|
||||
func (x Pol) MulMod(f, g Pol) Pol {
|
||||
if x == 0 || f == 0 {
|
||||
return 0
|
||||
}
|
||||
|
||||
var res Pol
|
||||
for i := 0; i <= f.Deg(); i++ {
|
||||
if (f & (1 << uint(i))) > 0 {
|
||||
a := x
|
||||
for j := 0; j < i; j++ {
|
||||
a = a.Mul(2).Mod(g)
|
||||
}
|
||||
res = res.Add(a).Mod(g)
|
||||
}
|
||||
}
|
||||
|
||||
return res
|
||||
}
|
||||
|
||||
// qp computes the polynomial (x^(2^p)-x) mod g. This is needed for the
|
||||
// reducibility test.
|
||||
func qp(p uint, g Pol) Pol {
|
||||
num := (1 << p)
|
||||
i := 1
|
||||
|
||||
// start with x
|
||||
res := Pol(2)
|
||||
|
||||
for i < num {
|
||||
// repeatedly square res
|
||||
res = res.MulMod(res, g)
|
||||
i *= 2
|
||||
}
|
||||
|
||||
// add x
|
||||
return res.Add(2).Mod(g)
|
||||
}
|
||||
|
||||
func (p Pol) MarshalJSON() ([]byte, error) {
|
||||
buf := strconv.AppendUint([]byte{'"'}, uint64(p), 16)
|
||||
buf = append(buf, '"')
|
||||
return buf, nil
|
||||
}
|
||||
|
||||
func (p *Pol) UnmarshalJSON(data []byte) error {
|
||||
if len(data) < 2 {
|
||||
return errors.New("invalid string for polynomial")
|
||||
}
|
||||
n, err := strconv.ParseUint(string(data[1:len(data)-1]), 16, 64)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
*p = Pol(n)
|
||||
|
||||
return nil
|
||||
}
|
385
Godeps/_workspace/src/github.com/whyrusleeping/chunker/polynomials_test.go
generated
vendored
385
Godeps/_workspace/src/github.com/whyrusleeping/chunker/polynomials_test.go
generated
vendored
@ -1,385 +0,0 @@
|
||||
package chunker_test
|
||||
|
||||
import (
|
||||
"strconv"
|
||||
"testing"
|
||||
|
||||
"github.com/restic/chunker"
|
||||
. "github.com/restic/restic/test"
|
||||
)
|
||||
|
||||
var polAddTests = []struct {
|
||||
x, y chunker.Pol
|
||||
sum chunker.Pol
|
||||
}{
|
||||
{23, 16, 23 ^ 16},
|
||||
{0x9a7e30d1e855e0a0, 0x670102a1f4bcd414, 0xfd7f32701ce934b4},
|
||||
{0x9a7e30d1e855e0a0, 0x9a7e30d1e855e0a0, 0},
|
||||
}
|
||||
|
||||
func TestPolAdd(t *testing.T) {
|
||||
for _, test := range polAddTests {
|
||||
Equals(t, test.sum, test.x.Add(test.y))
|
||||
Equals(t, test.sum, test.y.Add(test.x))
|
||||
}
|
||||
}
|
||||
|
||||
func parseBin(s string) chunker.Pol {
|
||||
i, err := strconv.ParseUint(s, 2, 64)
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
|
||||
return chunker.Pol(i)
|
||||
}
|
||||
|
||||
var polMulTests = []struct {
|
||||
x, y chunker.Pol
|
||||
res chunker.Pol
|
||||
}{
|
||||
{1, 2, 2},
|
||||
{
|
||||
parseBin("1101"),
|
||||
parseBin("10"),
|
||||
parseBin("11010"),
|
||||
},
|
||||
{
|
||||
parseBin("1101"),
|
||||
parseBin("11"),
|
||||
parseBin("10111"),
|
||||
},
|
||||
{
|
||||
0x40000000,
|
||||
0x40000000,
|
||||
0x1000000000000000,
|
||||
},
|
||||
{
|
||||
parseBin("1010"),
|
||||
parseBin("100100"),
|
||||
parseBin("101101000"),
|
||||
},
|
||||
{
|
||||
parseBin("100"),
|
||||
parseBin("11"),
|
||||
parseBin("1100"),
|
||||
},
|
||||
{
|
||||
parseBin("11"),
|
||||
parseBin("110101"),
|
||||
parseBin("1011111"),
|
||||
},
|
||||
{
|
||||
parseBin("10011"),
|
||||
parseBin("110101"),
|
||||
parseBin("1100001111"),
|
||||
},
|
||||
}
|
||||
|
||||
func TestPolMul(t *testing.T) {
|
||||
for i, test := range polMulTests {
|
||||
m := test.x.Mul(test.y)
|
||||
Assert(t, test.res == m,
|
||||
"TestPolMul failed for test %d: %v * %v: want %v, got %v",
|
||||
i, test.x, test.y, test.res, m)
|
||||
m = test.y.Mul(test.x)
|
||||
Assert(t, test.res == test.y.Mul(test.x),
|
||||
"TestPolMul failed for %d: %v * %v: want %v, got %v",
|
||||
i, test.x, test.y, test.res, m)
|
||||
}
|
||||
}
|
||||
|
||||
func TestPolMulOverflow(t *testing.T) {
|
||||
defer func() {
|
||||
// try to recover overflow error
|
||||
err := recover()
|
||||
|
||||
if e, ok := err.(string); ok && e == "multiplication would overflow uint64" {
|
||||
return
|
||||
} else {
|
||||
t.Logf("invalid error raised: %v", err)
|
||||
// re-raise error if not overflow
|
||||
panic(err)
|
||||
}
|
||||
}()
|
||||
|
||||
x := chunker.Pol(1 << 63)
|
||||
x.Mul(2)
|
||||
t.Fatal("overflow test did not panic")
|
||||
}
|
||||
|
||||
var polDivTests = []struct {
|
||||
x, y chunker.Pol
|
||||
res chunker.Pol
|
||||
}{
|
||||
{10, 50, 0},
|
||||
{0, 1, 0},
|
||||
{
|
||||
parseBin("101101000"), // 0x168
|
||||
parseBin("1010"), // 0xa
|
||||
parseBin("100100"), // 0x24
|
||||
},
|
||||
{2, 2, 1},
|
||||
{
|
||||
0x8000000000000000,
|
||||
0x8000000000000000,
|
||||
1,
|
||||
},
|
||||
{
|
||||
parseBin("1100"),
|
||||
parseBin("100"),
|
||||
parseBin("11"),
|
||||
},
|
||||
{
|
||||
parseBin("1100001111"),
|
||||
parseBin("10011"),
|
||||
parseBin("110101"),
|
||||
},
|
||||
}
|
||||
|
||||
func TestPolDiv(t *testing.T) {
|
||||
for i, test := range polDivTests {
|
||||
m := test.x.Div(test.y)
|
||||
Assert(t, test.res == m,
|
||||
"TestPolDiv failed for test %d: %v * %v: want %v, got %v",
|
||||
i, test.x, test.y, test.res, m)
|
||||
}
|
||||
}
|
||||
|
||||
var polModTests = []struct {
|
||||
x, y chunker.Pol
|
||||
res chunker.Pol
|
||||
}{
|
||||
{10, 50, 10},
|
||||
{0, 1, 0},
|
||||
{
|
||||
parseBin("101101001"),
|
||||
parseBin("1010"),
|
||||
parseBin("1"),
|
||||
},
|
||||
{2, 2, 0},
|
||||
{
|
||||
0x8000000000000000,
|
||||
0x8000000000000000,
|
||||
0,
|
||||
},
|
||||
{
|
||||
parseBin("1100"),
|
||||
parseBin("100"),
|
||||
parseBin("0"),
|
||||
},
|
||||
{
|
||||
parseBin("1100001111"),
|
||||
parseBin("10011"),
|
||||
parseBin("0"),
|
||||
},
|
||||
}
|
||||
|
||||
func TestPolModt(t *testing.T) {
|
||||
for _, test := range polModTests {
|
||||
Equals(t, test.res, test.x.Mod(test.y))
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkPolDivMod(t *testing.B) {
|
||||
f := chunker.Pol(0x2482734cacca49)
|
||||
g := chunker.Pol(0x3af4b284899)
|
||||
|
||||
for i := 0; i < t.N; i++ {
|
||||
g.DivMod(f)
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkPolDiv(t *testing.B) {
|
||||
f := chunker.Pol(0x2482734cacca49)
|
||||
g := chunker.Pol(0x3af4b284899)
|
||||
|
||||
for i := 0; i < t.N; i++ {
|
||||
g.Div(f)
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkPolMod(t *testing.B) {
|
||||
f := chunker.Pol(0x2482734cacca49)
|
||||
g := chunker.Pol(0x3af4b284899)
|
||||
|
||||
for i := 0; i < t.N; i++ {
|
||||
g.Mod(f)
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkPolDeg(t *testing.B) {
|
||||
f := chunker.Pol(0x3af4b284899)
|
||||
d := f.Deg()
|
||||
if d != 41 {
|
||||
t.Fatalf("BenchmalPolDeg: Wrong degree %d returned, expected %d",
|
||||
d, 41)
|
||||
}
|
||||
|
||||
for i := 0; i < t.N; i++ {
|
||||
f.Deg()
|
||||
}
|
||||
}
|
||||
|
||||
func TestRandomPolynomial(t *testing.T) {
|
||||
_, err := chunker.RandomPolynomial()
|
||||
OK(t, err)
|
||||
}
|
||||
|
||||
func BenchmarkRandomPolynomial(t *testing.B) {
|
||||
for i := 0; i < t.N; i++ {
|
||||
_, err := chunker.RandomPolynomial()
|
||||
OK(t, err)
|
||||
}
|
||||
}
|
||||
|
||||
func TestExpandPolynomial(t *testing.T) {
|
||||
pol := chunker.Pol(0x3DA3358B4DC173)
|
||||
s := pol.Expand()
|
||||
Equals(t, "x^53+x^52+x^51+x^50+x^48+x^47+x^45+x^41+x^40+x^37+x^36+x^34+x^32+x^31+x^27+x^25+x^24+x^22+x^19+x^18+x^16+x^15+x^14+x^8+x^6+x^5+x^4+x+1", s)
|
||||
}
|
||||
|
||||
var polIrredTests = []struct {
|
||||
f chunker.Pol
|
||||
irred bool
|
||||
}{
|
||||
{0x38f1e565e288df, false},
|
||||
{0x3DA3358B4DC173, true},
|
||||
{0x30a8295b9d5c91, false},
|
||||
{0x255f4350b962cb, false},
|
||||
{0x267f776110a235, false},
|
||||
{0x2f4dae10d41227, false},
|
||||
{0x2482734cacca49, true},
|
||||
{0x312daf4b284899, false},
|
||||
{0x29dfb6553d01d1, false},
|
||||
{0x3548245eb26257, false},
|
||||
{0x3199e7ef4211b3, false},
|
||||
{0x362f39017dae8b, false},
|
||||
{0x200d57aa6fdacb, false},
|
||||
{0x35e0a4efa1d275, false},
|
||||
{0x2ced55b026577f, false},
|
||||
{0x260b012010893d, false},
|
||||
{0x2df29cbcd59e9d, false},
|
||||
{0x3f2ac7488bd429, false},
|
||||
{0x3e5cb1711669fb, false},
|
||||
{0x226d8de57a9959, false},
|
||||
{0x3c8de80aaf5835, false},
|
||||
{0x2026a59efb219b, false},
|
||||
{0x39dfa4d13fb231, false},
|
||||
{0x3143d0464b3299, false},
|
||||
}
|
||||
|
||||
func TestPolIrreducible(t *testing.T) {
|
||||
for _, test := range polIrredTests {
|
||||
Assert(t, test.f.Irreducible() == test.irred,
|
||||
"Irreducibility test for Polynomial %v failed: got %v, wanted %v",
|
||||
test.f, test.f.Irreducible(), test.irred)
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkPolIrreducible(b *testing.B) {
|
||||
// find first irreducible polynomial
|
||||
var pol chunker.Pol
|
||||
for _, test := range polIrredTests {
|
||||
if test.irred {
|
||||
pol = test.f
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
for i := 0; i < b.N; i++ {
|
||||
Assert(b, pol.Irreducible(),
|
||||
"Irreducibility test for Polynomial %v failed", pol)
|
||||
}
|
||||
}
|
||||
|
||||
var polGCDTests = []struct {
|
||||
f1 chunker.Pol
|
||||
f2 chunker.Pol
|
||||
gcd chunker.Pol
|
||||
}{
|
||||
{10, 50, 2},
|
||||
{0, 1, 1},
|
||||
{
|
||||
parseBin("101101001"),
|
||||
parseBin("1010"),
|
||||
parseBin("1"),
|
||||
},
|
||||
{2, 2, 2},
|
||||
{
|
||||
parseBin("1010"),
|
||||
parseBin("11"),
|
||||
parseBin("11"),
|
||||
},
|
||||
{
|
||||
0x8000000000000000,
|
||||
0x8000000000000000,
|
||||
0x8000000000000000,
|
||||
},
|
||||
{
|
||||
parseBin("1100"),
|
||||
parseBin("101"),
|
||||
parseBin("11"),
|
||||
},
|
||||
{
|
||||
parseBin("1100001111"),
|
||||
parseBin("10011"),
|
||||
parseBin("10011"),
|
||||
},
|
||||
{
|
||||
0x3DA3358B4DC173,
|
||||
0x3DA3358B4DC173,
|
||||
0x3DA3358B4DC173,
|
||||
},
|
||||
{
|
||||
0x3DA3358B4DC173,
|
||||
0x230d2259defd,
|
||||
1,
|
||||
},
|
||||
{
|
||||
0x230d2259defd,
|
||||
0x51b492b3eff2,
|
||||
parseBin("10011"),
|
||||
},
|
||||
}
|
||||
|
||||
func TestPolGCD(t *testing.T) {
|
||||
for i, test := range polGCDTests {
|
||||
gcd := test.f1.GCD(test.f2)
|
||||
Assert(t, test.gcd == gcd,
|
||||
"GCD test %d (%+v) failed: got %v, wanted %v",
|
||||
i, test, gcd, test.gcd)
|
||||
gcd = test.f2.GCD(test.f1)
|
||||
Assert(t, test.gcd == gcd,
|
||||
"GCD test %d (%+v) failed: got %v, wanted %v",
|
||||
i, test, gcd, test.gcd)
|
||||
}
|
||||
}
|
||||
|
||||
var polMulModTests = []struct {
|
||||
f1 chunker.Pol
|
||||
f2 chunker.Pol
|
||||
g chunker.Pol
|
||||
mod chunker.Pol
|
||||
}{
|
||||
{
|
||||
0x1230,
|
||||
0x230,
|
||||
0x55,
|
||||
0x22,
|
||||
},
|
||||
{
|
||||
0x0eae8c07dbbb3026,
|
||||
0xd5d6db9de04771de,
|
||||
0xdd2bda3b77c9,
|
||||
0x425ae8595b7a,
|
||||
},
|
||||
}
|
||||
|
||||
func TestPolMulMod(t *testing.T) {
|
||||
for i, test := range polMulModTests {
|
||||
mod := test.f1.MulMod(test.f2, test.g)
|
||||
Assert(t, mod == test.mod,
|
||||
"MulMod test %d (%+v) failed: got %v, wanted %v",
|
||||
i, test, mod, test.mod)
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user