
* Initial commit * Prettier fixes * Doc-validator fixes part 1 * Doc-validator fixes part 2 * More doc-validator fixes * More doc-validator fixes * Test * link test * Linnk test * Link test * More fixes * More fixes * Doc-validator fixes * Doc-validator fixes * fix broken link * Fix * Testing * Doc fixes * Link fixes * Fix links * Update docs/sources/developers/plugins/create-a-grafana-plugin/_index.md Co-authored-by: David Harris <david.harris@grafana.com> * Testing * Testing * Testing * Testing * Doc-validator fixes * Doc-validator fixes * Doc-validator fixes * Fix broken links for plugins reorganization project * Prettier fixes * Prettier fixes * Incorporate reviewer feedback * Link fixes * Link fixes * Link fixes * Link fix * Deleted space * Codeowners fix * Change grafana.com links to absolute URLs for Hugo --------- Co-authored-by: David Harris <david.harris@grafana.com>
4.8 KiB
title | aliases | description | keywords | weight | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Build a streaming data source plugin |
|
How to build a streaming data source plugin. |
|
600 |
Build a streaming data source plugin
In Grafana, you can set your dashboards to automatically refresh at a certain interval, no matter what data source you use. Unfortunately, this means that your queries are requesting all the data to be sent again, regardless of whether the data has actually changed. Adding streaming to a plugin helps reduce queries so your dashboard is only updated when new data becomes available.
Before you begin
This guide assumes that you're already familiar with how to [Build a data source plugin]({{< relref "./build-a-data-source-plugin" >}})
Grafana uses RxJS to continuously send data from a data source to a panel visualization.
Note: To learn more about RxJs, refer to the RxJS documentation.
Add streaming to your data source
Enable streaming for your data source plugin to update your dashboard when new data becomes available.
For example, a streaming data source plugin can connect to a websocket, or subscribe to a message bus, and update the visualization whenever a new message is available.
Step 1: Edit the plugin.json
file
Enable streaming for your data source in the plugin.json
file.
{
"streaming": true
}
Step 2: Change the signature of the query
method
Modify the signature of the query
method to return an Observable
from the rxjs
package. Make sure you remove the async
keyword.
import { Observable } from 'rxjs';
query(options: DataQueryRequest<MyQuery>): Observable<DataQueryResponse> {
// ...
}
Step 3: Create an Observable
instance for each query
Create an Observable
instance for each query, and then combine them all using the merge
function from the rxjs
package.
import { Observable, merge } from 'rxjs';
const observables = options.targets.map((target) => {
return new Observable<DataQueryResponse>((subscriber) => {
// ...
});
});
return merge(...observables);
Step 4: Create a CircularDataFrame
instance
In the subscribe
function, create a CircularDataFrame
instance.
import { CircularDataFrame } from '@grafana/data';
const frame = new CircularDataFrame({
append: 'tail',
capacity: 1000,
});
frame.refId = query.refId;
frame.addField({ name: 'time', type: FieldType.time });
frame.addField({ name: 'value', type: FieldType.number });
Circular data frames have a limited capacity. When a circular data frame reaches its capacity, the oldest data point is removed.
Step 5: Send the updated data frame
Use subscriber.next()
to send the updated data frame whenever you receive new updates.
import { LoadingState } from '@grafana/data';
const intervalId = setInterval(() => {
frame.add({ time: Date.now(), value: Math.random() });
subscriber.next({
data: [frame],
key: query.refId,
state: LoadingState.Streaming,
});
}, 500);
return () => {
clearInterval(intervalId);
};
Note: In practice, you'd call
subscriber.next
as soon as you receive new data from a websocket or a message bus. In the example above, data is being received every 500 milliseconds.
Example code for final query
method
query(options: DataQueryRequest<MyQuery>): Observable<DataQueryResponse> {
const streams = options.targets.map(target => {
const query = defaults(target, defaultQuery);
return new Observable<DataQueryResponse>(subscriber => {
const frame = new CircularDataFrame({
append: 'tail',
capacity: 1000,
});
frame.refId = query.refId;
frame.addField({ name: 'time', type: FieldType.time });
frame.addField({ name: 'value', type: FieldType.number });
const intervalId = setInterval(() => {
frame.add({ time: Date.now(), value: Math.random() });
subscriber.next({
data: [frame],
key: query.refId,
state: LoadingState.Streaming,
});
}, 100);
return () => {
clearInterval(intervalId);
};
});
});
return merge(...streams);
}
One limitation with this example is that the panel visualization is cleared every time you update the dashboard. If you have access to historical data, you can add it, or backfill it, to the data frame before the first call to subscriber.next()
.
For another example of a streaming plugin, refer to the streaming websocket example on GitHub.