Created neural network visualization and feed forward animation

This commit is contained in:
Alec Helbling
2022-01-31 01:27:38 -05:00
committed by Alec Helbling
commit ea63ef5ec0
2 changed files with 137 additions and 0 deletions

6
Makefile Normal file
View File

@ -0,0 +1,6 @@
video:
manim -pqh src/autoencoder.py Autoencoder
checkstyle:
pycodestyle src
pydocstyle src
#docs:

131
src/neural_network.py Normal file
View File

@ -0,0 +1,131 @@
"""Neural Network Manim Visualization
This module is responsible for generating a neural network visualization with
manim, specifically a fully connected neural network diagram.
Example:
# Specify how many nodes are in each node layer
layer_node_count = [5, 3, 5]
# Create the object with default style settings
NeuralNetwork(layer_node_count)
"""
from manim import *
class NeuralNetworkLayer(VGroup):
"""Handles rendering a layer for a neural network"""
def __init__(
self, num_nodes, layer_width=0.3, node_radius=0.2,
node_color=BLUE, node_outline_color=WHITE, rectangle_color=WHITE,
node_spacing=0.6, rectangle_fill_color=BLACK):
super(VGroup, self).__init__()
self.num_nodes = num_nodes
self.layer_width = layer_width
self.node_radius = node_radius
self.node_color = node_color
self.node_outline_color = node_outline_color
self.rectangle_color = rectangle_color
self.node_spacing = node_spacing
self.rectangle_fill_color = rectangle_fill_color
self.node_group = VGroup()
self._construct_neural_network_layer()
def _construct_neural_network_layer(self):
"""Creates the neural network layer"""
# Add Nodes
for node_number in range(self.num_nodes):
node_object = Circle(radius=self.node_radius, color=self.node_color)
self.node_group.add(node_object)
# Space the nodes
# Assumes Vertical orientation
for node_index, node_object in enumerate(self.node_group):
location = node_index * self.node_spacing
node_object.move_to([0, location, 0])
# Create Surrounding Rectangle
surrounding_rectangle = SurroundingRectangle(
self.node_group, color=self.rectangle_color, fill_color=self.rectangle_fill_color, fill_opacity=1.0)
# Add the objects to the class
self.add(surrounding_rectangle, self.node_group)
class NeuralNetwork(VGroup):
def __init__(
self, layer_node_count, layer_width=1.0, node_radius=1.0,
node_color=BLUE, edge_color=WHITE, layer_spacing=1.5,
animation_dot_color=ORANGE):
super(VGroup, self).__init__()
self.layer_node_count = layer_node_count
self.layer_width = layer_width
self.node_radius = node_radius
self.node_color = node_color
self.edge_color = edge_color
self.layer_spacing = layer_spacing
self.animation_dot_color = animation_dot_color
self.layers = self._construct_layers()
self.edge_layers = self._construct_edges()
self.add(self.edge_layers)
self.add(self.layers)
def _construct_layers(self):
"""Creates the neural network"""
layers = VGroup()
# Create each layer
for layer_index, node_count in enumerate(self.layer_node_count):
layer = NeuralNetworkLayer(node_count)
# Manage spacing
layer.move_to([self.layer_spacing * layer_index, 0, 0])
# Add layer to VGroup
layers.add(layer)
# Create the connecting edges
layers.z_index = 1
return layers
def _construct_edges(self):
"""Draws connecting lines between layers"""
edge_layers = VGroup()
for layer_index in range(len(self.layer_node_count) - 1):
current_layer = self.layers[layer_index]
next_layer = self.layers[layer_index + 1]
edge_layer = VGroup()
# Go through each node in the two layers and make a connecting line
for node_i in current_layer.node_group:
for node_j in next_layer.node_group:
line = Line(node_i.get_center(), node_j.get_center(), color=self.edge_color)
edge_layer.add(line)
edge_layers.add(edge_layer)
edge_layers.z_index = 1
return edge_layers
def make_forward_propagation_animation(self, run_time=4):
"""Generates an animation for feed forward propogation"""
all_animations = []
per_layer_run_time = run_time / len(self.edge_layers)
for edge_layer in self.edge_layers:
path_animations = []
for edge in edge_layer:
dot = Dot(color=self.animation_dot_color)
dot.z_index = 0
anim = MoveAlongPath(dot, edge, run_time=per_layer_run_time, rate_function=linear)
path_animations.append(anim)
path_animation_group = AnimationGroup(*path_animations)
all_animations.append(path_animation_group)
animation_group = AnimationGroup(*all_animations, lag_ratio=1)
return animation_group
class TestNeuralNetworkScene(Scene):
"""Test Scene for the Neural Network"""
def construct(self):
# Make the Layer object
num_nodes = [5, 3, 5]
nn = NeuralNetwork(num_nodes)
nn.move_to(ORIGIN)
# Make Animation
self.add(nn)
forward_propagation_animation = nn.make_forward_propagation_animation()
self.play(forward_propagation_animation)