Overall working 3D convolution visualization.

This commit is contained in:
Alec Helbling
2022-12-30 21:41:50 -05:00
parent ff4c1ffded
commit b1a85ea782
9 changed files with 305 additions and 151 deletions

View File

@ -7,8 +7,8 @@ class GriddedRectangle(VGroup):
def __init__(self, color=ORANGE, height=2.0, width=4.0,
mark_paths_closed=True, close_new_points=True,
grid_xstep=None, grid_ystep=None, grid_stroke_width=0.0, #DEFAULT_STROKE_WIDTH/2,
grid_stroke_color=None, grid_stroke_opacity=None,
stroke_width=2.0, fill_opacity=0.2, **kwargs):
grid_stroke_color=ORANGE, grid_stroke_opacity=1.0,
stroke_width=2.0, fill_opacity=0.2, show_grid_lines=False, **kwargs):
super().__init__()
# Fields
self.mark_paths_closed = mark_paths_closed
@ -17,11 +17,12 @@ class GriddedRectangle(VGroup):
self.grid_ystep = grid_ystep
self.grid_stroke_width = grid_stroke_width
self.grid_stroke_color = grid_stroke_color
self.grid_stroke_opacity = grid_stroke_opacity
self.grid_stroke_opacity = grid_stroke_opacity if show_grid_lines else 0.0
self.stroke_width = stroke_width
self.rotation_angles = [0, 0, 0]
self.rectangle_width = width
self.rectangle_height = height
self.show_grid_lines = show_grid_lines
# Make rectangle
self.rectangle = Rectangle(
width=width,
@ -29,37 +30,64 @@ class GriddedRectangle(VGroup):
color=color,
stroke_width=stroke_width,
fill_color=color,
fill_opacity=fill_opacity
fill_opacity=fill_opacity,
)
self.add(self.rectangle)
# Make grid lines
grid_lines = self.make_grid_lines()
self.add(grid_lines)
# Make corner rectangles
self.corners_dict = self.make_corners_dict()
self.add(*self.corners_dict.values())
def make_corners_dict(self):
"""Make corners dictionary"""
corners_dict = {
"top_right": Dot(
self.rectangle.get_corner([1, 1, 0]),
fill_opacity=0.0,
radius=0.0
),
"top_left": Dot(
self.rectangle.get_corner([-1, 1, 0]),
fill_opacity=0.0,
radius=0.0
),
"bottom_left": Dot(
self.rectangle.get_corner([-1, -1, 0]),
fill_opacity=0.0,
radius=0.0
),
"bottom_right": Dot(
self.rectangle.get_corner([1, -1, 0]),
fill_opacity=0.0,
radius=0.0
),
}
return corners_dict
def get_corners_dict(self):
"""Returns a dictionary of the corners"""
# Sort points through clockwise rotation of a vector in the xy plane
return{
"top_right": Dot(self.rectangle.get_corner([1, 1, 0])),
"top_left": Dot(self.rectangle.get_corner([-1, 1, 0])),
"bottom_left": Dot(self.rectangle.get_corner([-1, -1, 0])),
"bottom_right": Dot(self.rectangle.get_corner([1, -1, 0])),
}
return self.corners_dict
def make_grid_lines(self):
"""Make grid lines in rectangle"""
grid_lines = VGroup()
width = self.width
height = self.width
v = self.inner_rectangle.get_vertices()
v = self.rectangle.get_vertices()
if self.grid_xstep is not None:
grid_xstep = abs(self.grid_xstep)
count = int(width / grid_xstep)
count = int(self.width / grid_xstep)
grid = VGroup(
*(
Line(
v[1] + i * grid_xstep * RIGHT,
v[1] + i * grid_xstep * RIGHT + height * DOWN,
color=self.color,
stroke_width=self.grid_stroke_width
v[1] + i * grid_xstep * RIGHT + self.height * DOWN,
stroke_color=self.grid_stroke_color,
stroke_width=self.grid_stroke_width,
stroke_opacity = self.grid_stroke_opacity
)
for i in range(1, count)
)
@ -68,14 +96,15 @@ class GriddedRectangle(VGroup):
if self.grid_ystep is not None:
grid_ystep = abs(self.grid_ystep)
count = int(height / grid_ystep)
count = int(self.height / grid_ystep)
grid = VGroup(
*(
Line(
v[1] + i * grid_ystep * DOWN,
v[1] + i * grid_ystep * DOWN + width * RIGHT,
color=self.color,
stroke_width = self.grid_stroke_width
v[1] + i * grid_ystep * DOWN + self.width * RIGHT,
stroke_color=self.grid_stroke_color,
stroke_width = self.grid_stroke_width,
stroke_opacity = self.grid_stroke_opacity
)
for i in range(1, count)
)
@ -86,3 +115,12 @@ class GriddedRectangle(VGroup):
def get_center(self):
return self.rectangle.get_center()
def get_normal_vector(self):
vertex_1 = self.rectangle.get_vertices()[0]
vertex_2 = self.rectangle.get_vertices()[1]
vertex_3 = self.rectangle.get_vertices()[2]
# First vector
normal_vector = np.cross((vertex_1 - vertex_2), (vertex_1 - vertex_3))
return normal_vector

View File

@ -1,3 +1,4 @@
from manim_ml.neural_network.layers.convolutional_3d_to_feed_forward import Convolutional3DToFeedForward
from manim_ml.neural_network.layers.image_to_convolutional3d import ImageToConvolutional3DLayer
from .convolutional3d_to_convolutional3d import Convolutional3DToConvolutional3D
from .convolutional2d_to_convolutional2d import Convolutional2DToConvolutional2D
@ -32,4 +33,5 @@ connective_layers_list = (
Convolutional3DToConvolutional3D,
Convolutional2DToConvolutional2D,
ImageToConvolutional3DLayer,
Convolutional3DToFeedForward
)

View File

@ -62,8 +62,7 @@ class Convolutional2DToConvolutional2D(ConnectiveLayer):
def make_filter_propagation_animation(self):
"""Make filter propagation animation"""
old_z_index = self.filter_lines.z_index
lines_copy = self.filter_lines.copy().set_color(ORANGE).set_z_index(old_z_index + 1)
lines_copy = self.filter_lines.copy().set_color(ORANGE)
animation_group = AnimationGroup(
Create(lines_copy, lag_ratio=0.0),
# FadeOut(self.filter_lines),

View File

@ -8,7 +8,7 @@ class Convolutional3DLayer(VGroupNeuralNetworkLayer, ThreeDLayer):
def __init__(self, num_feature_maps, feature_map_width, feature_map_height,
filter_width, filter_height, cell_width=0.2, filter_spacing=0.1, color=BLUE,
pulse_color=ORANGE, filter_color=ORANGE, stride=1, stroke_width=2.0, **kwargs):
pulse_color=ORANGE, show_grid_lines=False, filter_color=ORANGE, stride=1, stroke_width=2.0, **kwargs):
super().__init__(**kwargs)
self.num_feature_maps = num_feature_maps
self.feature_map_height = feature_map_height
@ -22,20 +22,24 @@ class Convolutional3DLayer(VGroupNeuralNetworkLayer, ThreeDLayer):
self.pulse_color = pulse_color
self.stride = stride
self.stroke_width = stroke_width
self.show_grid_lines = show_grid_lines
# Make the feature maps
self.feature_maps = self.construct_feature_maps()
self.add(self.feature_maps)
# Rotate stuff properly
# normal_vector = self.feature_maps[0].get_normal_vector()
self.rotate(
ThreeDLayer.three_d_x_rotation,
ThreeDLayer.rotation_angle,
about_point=self.get_center(),
axis=[1, 0, 0]
axis=ThreeDLayer.rotation_axis
)
"""
self.rotate(
ThreeDLayer.three_d_y_rotation,
about_point=self.get_center(),
axis=[0, 1, 0]
)
"""
def construct_feature_maps(self):
"""Creates the neural network layer"""
@ -50,14 +54,17 @@ class Convolutional3DLayer(VGroupNeuralNetworkLayer, ThreeDLayer):
fill_opacity=0.2,
stroke_color=self.color,
stroke_width=self.stroke_width,
# grid_xstep=self.cell_width,
# grid_ystep=self.cell_width,
# grid_stroke_width=DEFAULT_STROKE_WIDTH/2
grid_xstep=self.cell_width,
grid_ystep=self.cell_width,
grid_stroke_width=self.stroke_width/2,
grid_stroke_color=self.color,
show_grid_lines=self.show_grid_lines,
)
# Move the feature map
rectangle.move_to(
[0, 0, filter_index * self.filter_spacing]
)
rectangle.set_z_index(4)
feature_maps.append(rectangle)
return VGroup(*feature_maps)

View File

@ -13,19 +13,28 @@ class Filters(VGroup):
input_layer,
output_layer,
line_color=ORANGE,
cell_width=1.0,
stroke_width=2.0,
show_grid_lines=False,
output_feature_map_to_connect=None # None means all at once
):
super().__init__()
self.input_layer = input_layer
self.output_layer = output_layer
self.line_color = line_color
self.cell_width = cell_width
self.stroke_width = stroke_width
self.show_grid_lines = show_grid_lines
self.output_feature_map_to_connect = output_feature_map_to_connect
# Make the filter
self.input_rectangles = self.make_input_feature_map_rectangles()
# self.input_rectangles.set_z_index(5)
# self.add(self.input_rectangles)
self.output_rectangles = self.make_output_feature_map_rectangles()
# self.output_rectangles.set_z_index(5)
# self.add(self.output_rectangles)
self.connective_lines = self.make_connective_lines()
# self.connective_lines.set_z_index(5)
# self.add(self.connective_lines)
def make_input_feature_map_rectangles(self):
@ -42,24 +51,27 @@ class Filters(VGroup):
fill_color=filter_color,
stroke_color=filter_color,
fill_opacity=0.2,
z_index=2,
stroke_width=self.stroke_width,
grid_xstep=self.cell_width,
grid_ystep=self.cell_width,
grid_stroke_width=self.stroke_width / 2,
grid_stroke_color=filter_color,
show_grid_lines=self.show_grid_lines,
)
# normal_vector = rectangle.get_normal_vector()
rectangle.rotate(
ThreeDLayer.three_d_x_rotation,
ThreeDLayer.rotation_angle,
about_point=rectangle.get_center(),
axis=[1, 0, 0]
)
rectangle.rotate(
ThreeDLayer.three_d_y_rotation,
about_point=rectangle.get_center(),
axis=[0, 1, 0]
axis=ThreeDLayer.rotation_axis
)
# Move the rectangle to the corner of the feature map
rectangle.move_to(
feature_map,
aligned_edge=np.array([-1, 1, 0])
rectangle.next_to(
feature_map.get_corners_dict()["top_left"],
submobject_to_align=rectangle.get_corners_dict()["top_left"],
buff=0.0
# aligned_edge=feature_map.get_corners_dict()["top_left"].get_center()
)
rectangle.set_z_index(5)
rectangles.append(rectangle)
@ -75,32 +87,36 @@ class Filters(VGroup):
filter_color = self.output_layer.filter_color
for index, feature_map in enumerate(self.output_layer.feature_maps):
# Make sure current feature map is the right filte
if not self.output_feature_map_to_connect is None:
if index != self.output_feature_map_to_connect:
continue
# Make the rectangle
rectangle = GriddedRectangle(
width=rectangle_width,
height=rectangle_height,
fill_color=filter_color,
stroke_color=filter_color,
fill_opacity=0.2,
stroke_color=filter_color,
stroke_width=self.stroke_width,
z_index=2,
grid_xstep=self.cell_width,
grid_ystep=self.cell_width,
grid_stroke_width=self.stroke_width/2,
grid_stroke_color=filter_color,
show_grid_lines=self.show_grid_lines,
)
# Center on feature map
# rectangle.move_to(feature_map.get_center())
# Rotate the rectangle
rectangle.rotate(
ThreeDLayer.three_d_x_rotation,
ThreeDLayer.rotation_angle,
about_point=rectangle.get_center(),
axis=[1, 0, 0]
)
rectangle.rotate(
ThreeDLayer.three_d_y_rotation,
about_point=rectangle.get_center(),
axis=[0, 1, 0]
axis=ThreeDLayer.rotation_axis
)
# Move the rectangle to the corner location
rectangle.move_to(
feature_map,
aligned_edge=np.array([-1, 1, 0])
rectangle.next_to(
feature_map.get_corners_dict()["top_left"],
submobject_to_align=rectangle.get_corners_dict()["top_left"],
buff=0.0
# aligned_edge=feature_map.get_corners_dict()["top_left"].get_center()
)
rectangles.append(rectangle)
@ -127,7 +143,7 @@ class Filters(VGroup):
first_input_corners[corner_name].get_center(),
last_input_corners[corner_name].get_center(),
color=self.line_color,
stroke_width=self.stroke_width
stroke_width=self.stroke_width,
)
lines.append(line)
@ -147,7 +163,7 @@ class Filters(VGroup):
first_output_corners[corner_name].get_center(),
last_output_corners[corner_name].get_center(),
color=self.line_color,
stroke_width=self.stroke_width
stroke_width=self.stroke_width,
)
lines.append(line)
@ -155,19 +171,20 @@ class Filters(VGroup):
def make_input_to_output_connective_lines():
"""Make connective lines between last input filter and first output filter"""
last_input_rectangle = self.input_rectangles[-1]
first_output_rectangle = self.output_rectangles[0]
# Choose the correct feature map to link to
input_rectangle = self.input_rectangles[-1]
output_rectangle = self.output_rectangles[0]
# Get the corner dots for each rectangle
last_input_corners = last_input_rectangle.get_corners_dict()
first_output_corners = first_output_rectangle.get_corners_dict()
input_corners = input_rectangle.get_corners_dict()
output_corners = output_rectangle.get_corners_dict()
# Iterate through each corner and make the lines
lines = []
for corner_name in corner_names:
line = Line(
last_input_corners[corner_name].get_center(),
first_output_corners[corner_name].get_center(),
input_corners[corner_name].get_center(),
output_corners[corner_name].get_center(),
color=self.line_color,
stroke_width=self.stroke_width
stroke_width=self.stroke_width,
)
lines.append(line)
@ -211,7 +228,23 @@ class Filters(VGroup):
add_content,
self
)
return AnimationGroup(
Create(self.input_rectangles),
Create(self.connective_lines),
Create(self.output_rectangles),
lag_ratio=0.0
)
def make_pulse_animation(self, shift_amount):
"""Make animation of the filter pulsing"""
passing_flash = ShowPassingFlash(
self.connective_lines.shift(shift_amount).set_stroke_width(self.stroke_width*1.5),
time_width=0.2,
color=RED,
z_index=10
)
return passing_flash
class Convolutional3DToConvolutional3D(ConnectiveLayer, ThreeDLayer):
"""Feed Forward to Embedding Layer"""
@ -219,8 +252,8 @@ class Convolutional3DToConvolutional3D(ConnectiveLayer, ThreeDLayer):
output_class = Convolutional3DLayer
def __init__(self, input_layer: Convolutional3DLayer, output_layer: Convolutional3DLayer,
color=WHITE, filter_opacity=0.3, line_color=WHITE,
pulse_color=ORANGE, **kwargs):
color=ORANGE, filter_opacity=0.3, line_color=ORANGE,
pulse_color=ORANGE, cell_width=0.2, show_grid_lines=True, **kwargs):
super().__init__(input_layer, output_layer, input_class=Convolutional3DLayer,
output_class=Convolutional3DLayer, **kwargs)
self.color = color
@ -234,69 +267,48 @@ class Convolutional3DToConvolutional3D(ConnectiveLayer, ThreeDLayer):
self.cell_width = self.input_layer.cell_width
self.stride = self.input_layer.stride
self.filter_opacity = filter_opacity
self.cell_width = cell_width
self.line_color = line_color
self.pulse_color = pulse_color
def make_filter_propagation_animation(self):
"""Make filter propagation animation"""
# TODO implement this
raise NotImplementedError()
# Deprecated code
old_z_index = self.filter_lines.z_index
lines_copy = self.filter_lines.copy().set_color(ORANGE).set_z_index(old_z_index + 1)
animation_group = AnimationGroup(
Create(lines_copy, lag_ratio=0.0),
# FadeOut(self.filter_lines),
FadeOut(lines_copy),
lag_ratio=1.0
)
return animation_group
self.show_grid_lines = show_grid_lines
def get_rotated_shift_vectors(self):
"""
Rotates the shift vectors
"""
x_rot_mat = rotation_matrix(
ThreeDLayer.three_d_x_rotation,
[1, 0, 0]
)
y_rot_mat = rotation_matrix(
ThreeDLayer.three_d_y_rotation,
[0, 1, 0]
)
# Make base shift vectors
right_shift = np.array([self.input_layer.cell_width, 0, 0])
down_shift = np.array([0, -self.input_layer.cell_width, 0])
# Rotate the vectors
right_shift = np.dot(right_shift, x_rot_mat.T)
right_shift = np.dot(right_shift, y_rot_mat.T)
down_shift = np.dot(down_shift, x_rot_mat.T)
down_shift = np.dot(down_shift, y_rot_mat.T)
# Make rotation matrix
rot_mat = rotation_matrix(
ThreeDLayer.rotation_angle,
ThreeDLayer.rotation_axis
)
# Rotate the vectors
right_shift = np.dot(right_shift, rot_mat.T)
down_shift = np.dot(down_shift, rot_mat.T)
return right_shift, down_shift
def make_forward_pass_animation(self, layer_args={},
all_filters_at_once=False, run_time=10.5, **kwargs):
"""Forward pass animation from conv2d to conv2d"""
def animate_filters_all_at_once(self, filters):
"""Animates each of the filters all at once"""
animations = []
# Make filters
filters = Filters(self.input_layer, self.output_layer)
filters.set_z_index(self.input_layer.feature_maps[0].get_z_index() + 1)
# self.add(filters)
filters = Filters(
self.input_layer,
self.output_layer,
line_color=self.color,
cell_width=self.cell_width,
show_grid_lines=self.show_grid_lines,
output_feature_map_to_connect=None # None means all at once
)
animations.append(
Create(filters)
)
# Get shift vectors
# Get the rotated shift vectors
right_shift, down_shift = self.get_rotated_shift_vectors()
left_shift = -1 * right_shift
# filters.rotate(ThreeDLayer.three_d_theta, axis=[0, 0, 1])
# filters.rotate(ThreeDLayer.three_d_phi, axis=-filters.get_center())
# Make animations for creating the filters, output_nodes, and filter_lines
# TODO decide if I want to create the filters at the start of a conv
# animation or have them there by default
# Rotate the base shift vectors
# Make filter shifting animations
# Make the animation
num_y_moves = int((self.feature_map_height - self.filter_height) / self.stride)
num_x_moves = int((self.feature_map_width - self.filter_width) / self.stride)
for y_move in range(num_y_moves):
@ -331,15 +343,93 @@ class Convolutional3DToConvolutional3D(ConnectiveLayer, ThreeDLayer):
animations.append(
FadeOut(filters)
)
# Remove filters
return Succession(
*animations,
lag_ratio=1.0
)
def set_z_index(self, z_index, family=False):
"""Override set_z_index"""
super().set_z_index(4)
def animate_filters_one_at_a_time(self):
"""Animates each of the filters one at a time"""
animations = []
output_feature_maps = self.output_layer.feature_maps
for filter_index in range(len(output_feature_maps)):
# Make filters
filters = Filters(
self.input_layer,
self.output_layer,
line_color=self.color,
cell_width=self.cell_width,
show_grid_lines=self.show_grid_lines,
output_feature_map_to_connect=filter_index # None means all at once
)
animations.append(
Create(filters)
)
# Get the rotated shift vectors
right_shift, down_shift = self.get_rotated_shift_vectors()
left_shift = -1 * right_shift
# Make the animation
num_y_moves = int((self.feature_map_height - self.filter_height) / self.stride)
num_x_moves = int((self.feature_map_width - self.filter_width) / self.stride)
for y_move in range(num_y_moves):
# Go right num_x_moves
for x_move in range(num_x_moves):
# Make a pulse animation for the corners
"""
pulse_animation = filters.make_pulse_animation(
shift_amount=shift_amount
)
animations.append(pulse_animation)
"""
z_index_animation = ApplyMethod(
filters.set_z_index,
5
)
animations.append(z_index_animation)
# Shift right
shift_animation = ApplyMethod(
filters.shift,
self.stride * right_shift
)
# shift_animation = self.animate.shift(right_shift)
animations.append(shift_animation)
# Go back left num_x_moves and down one
shift_amount = self.stride * num_x_moves * left_shift + self.stride * down_shift
# Make the animation
shift_animation = ApplyMethod(
filters.shift,
shift_amount
)
animations.append(shift_animation)
# Do last row move right
for x_move in range(num_x_moves):
# Shift right
shift_animation = ApplyMethod(
filters.shift,
self.stride * right_shift
)
# shift_animation = self.animate.shift(right_shift)
animations.append(shift_animation)
# Remove the filters
animations.append(
FadeOut(filters)
)
return Succession(
*animations,
lag_ratio=1.0
)
def make_forward_pass_animation(self, layer_args={},
all_filters_at_once=False, run_time=10.5, **kwargs):
"""Forward pass animation from conv2d to conv2d"""
print(f"All filters at once: {all_filters_at_once}")
# Make filter shifting animations
if all_filters_at_once:
return self.animate_filters_all_at_once()
else:
return self.animate_filters_one_at_a_time()
def scale(self, scale_factor, **kwargs):
self.cell_width *= scale_factor

View File

@ -0,0 +1,37 @@
from manim import *
from manim_ml.neural_network.layers.parent_layers import ConnectiveLayer, ThreeDLayer
from manim_ml.neural_network.layers.feed_forward import FeedForwardLayer
from manim_ml.neural_network.layers.convolutional3d import Convolutional3DLayer
class Convolutional3DToFeedForward(ConnectiveLayer, ThreeDLayer):
"""Feed Forward to Embedding Layer"""
input_class = Convolutional3DLayer
output_class = FeedForwardLayer
def __init__(self, input_layer: Convolutional3DLayer, output_layer: FeedForwardLayer,
passing_flash_color=ORANGE, **kwargs):
super().__init__(input_layer, output_layer, input_class=Convolutional3DLayer,
output_class=Convolutional3DLayer, **kwargs)
self.passing_flash_color = passing_flash_color
def make_forward_pass_animation(self, layer_args={}, run_time=1.5, **kwargs):
"""Forward pass animation from conv2d to conv2d"""
animations = []
# Get input layer final feature map
final_feature_map = self.input_layer.feature_maps[-1]
# Get output layer nodes
feed_forward_nodes = self.output_layer.node_group
# Go through each corner
corners = final_feature_map.get_corners_dict().values()
for corner in corners:
# Go through each node
for node in feed_forward_nodes:
line = Line(corner, node, stroke_width=1.0)
line.set_z_index(self.output_layer.node_group.get_z_index())
anim = ShowPassingFlash(
line.set_color(self.passing_flash_color),
time_width=0.2
)
animations.append(anim)
return AnimationGroup(*animations)

View File

@ -48,6 +48,14 @@ class ImageToConvolutional3DLayer(VGroupNeuralNetworkLayer, ThreeDLayer):
target_feature_map = self.output_layer.feature_maps[0]
# Map image mobject to feature map
# Make rotation of image
rotation = ApplyMethod(
image_mobject.rotate,
ThreeDLayer.rotation_angle,
ThreeDLayer.rotation_axis,
image_mobject.get_center(),
run_time=0.5
)
"""
x_rotation = ApplyMethod(
image_mobject.rotate,
ThreeDLayer.three_d_x_rotation,
@ -62,6 +70,7 @@ class ImageToConvolutional3DLayer(VGroupNeuralNetworkLayer, ThreeDLayer):
image_mobject.get_center(),
run_time=0.5
)
"""
# Set opacity
set_opacity = ApplyMethod(
image_mobject.set_opacity,
@ -84,43 +93,13 @@ class ImageToConvolutional3DLayer(VGroupNeuralNetworkLayer, ThreeDLayer):
)
# Compose the animations
animation = Succession(
x_rotation,
y_rotation,
rotation,
scale_image,
set_opacity,
move_image,
)
return animation
"""
# Make the object 3D by adding it back into camera frame
def remove_fixed_func(image_mobject):
# self.camera.remove_fixed_orientation_mobjects(image_mobject)
# self.camera.remove_fixed_in_frame_mobjects(image_mobject)
return image_mobject
remove_fixed = ApplyFunction(
remove_fixed_func,
image_mobject
)
animations.append(remove_fixed)
# Make a transformation of the image_mobject to the first feature map
input_to_feature_map_transformation = Transform(image_mobject, target_feature_map)
animations.append(input_to_feature_map_transformation)
# Make the object fixed in 2D again
def make_fixed_func(image_mobject):
# self.camera.add_fixed_orientation_mobjects(image_mobject)
# self.camera.add_fixed_in_frame_mobjects(image_mobject)
return image_mobject
make_fixed = ApplyFunction(
make_fixed_func,
image_mobject
)
animations.append(make_fixed)
return AnimationGroup(*animations)
"""
def scale(self, scale_factor, **kwargs):
super().scale(scale_factor, **kwargs)

View File

@ -42,8 +42,10 @@ class VGroupNeuralNetworkLayer(NeuralNetworkLayer):
class ThreeDLayer(ABC):
"""Abstract class for 3D layers"""
# Angle of ThreeD layers is static context
three_d_x_rotation = 0 * DEGREES #-90 * DEGREES
three_d_y_rotation = 75 * DEGREES # -10 * DEGREES
three_d_x_rotation = 90 * DEGREES #-90 * DEGREES
three_d_y_rotation = 0 * DEGREES # -10 * DEGREES
rotation_angle = 60 * DEGREES
rotation_axis = [0.1, 0.9, 0]
class ConnectiveLayer(VGroupNeuralNetworkLayer):
"""Forward pass animation for a given pair of layers"""

View File

@ -17,9 +17,8 @@ class CombinedScene(ThreeDScene):
image = Image.open('../assets/mnist/digit.jpeg')
numpy_image = np.asarray(image)
# Make nn
nn = NeuralNetwork(
[
ImageLayer(numpy_image, height=2.0),
nn = NeuralNetwork([
ImageLayer(numpy_image, height=1.5),
Convolutional3DLayer(1, 7, 7, 3, 3, filter_spacing=0.32),
Convolutional3DLayer(3, 5, 5, 3, 3, filter_spacing=0.32),
Convolutional3DLayer(5, 3, 3, 1, 1, filter_spacing=0.18),
@ -27,18 +26,19 @@ class CombinedScene(ThreeDScene):
FeedForwardLayer(3),
],
layer_spacing=0.25,
# camera=self.camera
)
# Center the nn
# self.add(nn)
nn.move_to(ORIGIN)
self.add(nn)
"""
self.play(
FadeIn(nn)
)
"""
# Play animation
forward_pass = nn.make_forward_pass_animation(
corner_pulses=False,
all_filters_at_once=True
all_filters_at_once=False
)
self.wait(1)
self.play(