mirror of
https://github.com/helblazer811/ManimML.git
synced 2025-05-23 05:25:56 +08:00
Embedding Neural Network Layer.
This commit is contained in:
@ -1,4 +1,4 @@
|
||||
# Manim Machine Learning
|
||||
# ManimML
|
||||
<a href="https://github.com/helblazer811/ManimMachineLearning">
|
||||
<img src="examples/media/ManimMLLogo.gif">
|
||||
</a>
|
||||
@ -8,7 +8,7 @@
|
||||

|
||||
[](https://twitter.com/alec_helbling)
|
||||
|
||||
Manim Machine Learning is a project focused on providing animations and visualizations of common machine learning concepts with the [Manim Community Library](https://www.manim.community/). We want this project to be a compilation of primitive visualizations that can be easily combined to create videos about complex machine learning concepts. Additionally, we want to provide a set of abstractions which allow users to focus on explanations instead of software engineering.
|
||||
ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the [Manim Community Library](https://www.manim.community/). We want this project to be a compilation of primitive visualizations that can be easily combined to create videos about complex machine learning concepts. Additionally, we want to provide a set of abstractions which allow users to focus on explanations instead of software engineering.
|
||||
|
||||
## Table of Contents
|
||||
|
||||
|
@ -1,110 +0,0 @@
|
||||
"""
|
||||
Layers that describe the connections between user layers.
|
||||
"""
|
||||
from manim import *
|
||||
from manim_ml.neural_network.layers import NeuralNetworkLayer
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
class ConnectiveLayer(NeuralNetworkLayer):
|
||||
"""Forward pass animation for a given pair of layers"""
|
||||
|
||||
@abstractmethod
|
||||
def __init__(self, input_layer, output_layer):
|
||||
super(NeuralNetworkLayer, self).__init__()
|
||||
self.input_layer = input_layer
|
||||
self.output_layer = output_layer
|
||||
|
||||
@abstractmethod
|
||||
def make_forward_pass_animation(self):
|
||||
pass
|
||||
|
||||
class FeedForwardToFeedForward(ConnectiveLayer):
|
||||
"""Layer for connecting FeedForward layer to FeedForwardLayer"""
|
||||
|
||||
def __init__(self, input_layer, output_layer, passing_flash=True,
|
||||
dot_radius=0.05, animation_dot_color=RED, edge_color=WHITE,
|
||||
edge_width=0.5):
|
||||
super().__init__(input_layer, output_layer)
|
||||
self.passing_flash = passing_flash
|
||||
self.edge_color = edge_color
|
||||
self.dot_radius = dot_radius
|
||||
self.animation_dot_color = animation_dot_color
|
||||
self.edge_width = edge_width
|
||||
|
||||
self.edges = self.construct_edges()
|
||||
self.add(self.edges)
|
||||
|
||||
def construct_edges(self):
|
||||
# Go through each node in the two layers and make a connecting line
|
||||
edges = []
|
||||
for node_i in self.input_layer.node_group:
|
||||
for node_j in self.output_layer.node_group:
|
||||
line = Line(node_i.get_center(), node_j.get_center(),
|
||||
color=self.edge_color, stroke_width=self.edge_width)
|
||||
edges.append(line)
|
||||
|
||||
edges = VGroup(*edges)
|
||||
return edges
|
||||
|
||||
def make_forward_pass_animation(self, run_time=1):
|
||||
"""Animation for passing information from one FeedForwardLayer to the next"""
|
||||
path_animations = []
|
||||
dots = []
|
||||
for edge in self.edges:
|
||||
dot = Dot(color=self.animation_dot_color, fill_opacity=1.0, radius=self.dot_radius)
|
||||
# Handle layering
|
||||
dot.set_z_index(1)
|
||||
# Add to dots group
|
||||
dots.append(dot)
|
||||
# Make the animation
|
||||
if self.passing_flash:
|
||||
anim = ShowPassingFlash(edge.copy().set_color(self.animation_dot_color), time_width=0.2, run_time=3)
|
||||
else:
|
||||
anim = MoveAlongPath(dot, edge, run_time=run_time, rate_function=sigmoid)
|
||||
path_animations.append(anim)
|
||||
|
||||
if not self.passing_flash:
|
||||
dots = VGroup(*dots)
|
||||
self.add(dots)
|
||||
|
||||
path_animations = AnimationGroup(*path_animations)
|
||||
|
||||
return path_animations
|
||||
|
||||
@override_animation(Create)
|
||||
def _create_animation(self, **kwargs):
|
||||
animations = []
|
||||
|
||||
for edge in self.edges:
|
||||
animations.append(Create(edge))
|
||||
|
||||
animation_group = AnimationGroup(*animations, lag_ratio=0.0)
|
||||
return animation_group
|
||||
|
||||
class ImageToFeedForward(ConnectiveLayer):
|
||||
"""Image Layer to FeedForward layer"""
|
||||
|
||||
def __init__(self, input_layer, output_layer, animation_dot_color=RED,
|
||||
dot_radius=0.05):
|
||||
self.animation_dot_color = animation_dot_color
|
||||
self.dot_radius = dot_radius
|
||||
# Input assumed to be ImageLayer
|
||||
# Output assumed to be FeedForwardLayer
|
||||
super().__init__(input_layer, output_layer)
|
||||
|
||||
def make_forward_pass_animation(self):
|
||||
"""Makes dots diverge from the given location and move to the feed forward nodes decoder"""
|
||||
animations = []
|
||||
image_mobject = self.input_layer.image_mobject
|
||||
# Move the dots to the centers of each of the nodes in the FeedForwardLayer
|
||||
image_location = image_mobject.get_center()
|
||||
for node in self.output_layer.node_group:
|
||||
new_dot = Dot(image_location, radius=self.dot_radius, color=self.animation_dot_color)
|
||||
per_node_succession = Succession(
|
||||
Create(new_dot),
|
||||
new_dot.animate.move_to(node.get_center()),
|
||||
)
|
||||
animations.append(per_node_succession)
|
||||
|
||||
animation_group = AnimationGroup(*animations)
|
||||
return animation_group
|
241
manim_ml/neural_network/embedding.py
Normal file
241
manim_ml/neural_network/embedding.py
Normal file
@ -0,0 +1,241 @@
|
||||
from manim import *
|
||||
from manim_ml.neural_network.layers import ConnectiveLayer, VGroupNeuralNetworkLayer
|
||||
import numpy as np
|
||||
import math
|
||||
|
||||
class GaussianDistribution(VGroup):
|
||||
"""Object for drawing a Gaussian distribution"""
|
||||
|
||||
def __init__(self, axes, mean=None, cov=None, **kwargs):
|
||||
super(VGroup, self).__init__(**kwargs)
|
||||
self.axes = axes
|
||||
self.mean = mean
|
||||
self.cov = cov
|
||||
if mean is None:
|
||||
self.mean = np.array([0.0, 0.0])
|
||||
if cov is None:
|
||||
self.cov = np.array([[3, 0], [0, 3]])
|
||||
# Make the Gaussian
|
||||
self.ellipses = self.construct_gaussian_distribution(self.mean, self.cov)
|
||||
self.ellipses.set_z_index(2)
|
||||
|
||||
@override_animation(Create)
|
||||
def _create_gaussian_distribution(self):
|
||||
return Create(self.ellipses)
|
||||
|
||||
def compute_covariance_rotation_and_scale(self, covariance):
|
||||
# Get the eigenvectors and eigenvalues
|
||||
eigenvalues, eigenvectors = np.linalg.eig(covariance)
|
||||
y, x = eigenvectors[0, 1], eigenvectors[0, 0]
|
||||
center_location = np.array([y, x, 0])
|
||||
center_location = self.axes.coords_to_point(*center_location)
|
||||
angle = math.atan(x / y) # x over y to denote the angle between y axis and vector
|
||||
# Calculate the width and height
|
||||
height = np.abs(eigenvalues[0])
|
||||
width = np.abs(eigenvalues[1])
|
||||
shape_coord = np.array([width, height, 0])
|
||||
shape_coord = self.axes.coords_to_point(*shape_coord)
|
||||
width = shape_coord[0]
|
||||
height = shape_coord[1]
|
||||
|
||||
return angle, width, height
|
||||
|
||||
def construct_gaussian_distribution(self, mean, covariance, color=ORANGE,
|
||||
num_ellipses=4):
|
||||
"""Returns a 2d Gaussian distribution object with given mean and covariance"""
|
||||
# map mean and covariance to frame coordinates
|
||||
mean = self.axes.coords_to_point(*mean)
|
||||
# Figure out the scale and angle of rotation
|
||||
rotation, width, height = self.compute_covariance_rotation_and_scale(covariance)
|
||||
# Make covariance ellipses
|
||||
opacity = 0.0
|
||||
ellipses = VGroup()
|
||||
for ellipse_number in range(num_ellipses):
|
||||
opacity += 1.0 / num_ellipses
|
||||
ellipse_width = width * (1 - opacity)
|
||||
ellipse_height = height * (1 - opacity)
|
||||
ellipse = Ellipse(
|
||||
width=ellipse_width,
|
||||
height=ellipse_height,
|
||||
color=color,
|
||||
fill_opacity=opacity,
|
||||
stroke_width=0.0
|
||||
)
|
||||
ellipse.move_to(mean)
|
||||
ellipse.rotate(rotation)
|
||||
ellipses.add(ellipse)
|
||||
|
||||
return ellipses
|
||||
|
||||
class EmbeddingLayer(VGroupNeuralNetworkLayer):
|
||||
"""NeuralNetwork embedding object that can show probability distributions"""
|
||||
|
||||
def __init__(self, point_radius=0.02):
|
||||
super(EmbeddingLayer, self).__init__()
|
||||
self.point_radius = point_radius
|
||||
self.axes = Axes(
|
||||
tips=False,
|
||||
x_length=1,
|
||||
y_length=1
|
||||
)
|
||||
self.add(self.axes)
|
||||
# Make point cloud
|
||||
mean = np.array([0, 0])
|
||||
covariance = np.array([[1.5, 0], [0, 1.5]])
|
||||
self.point_cloud = self.construct_gaussian_point_cloud(mean, covariance)
|
||||
self.add(self.point_cloud)
|
||||
# Make latent distribution
|
||||
self.latent_distribution = GaussianDistribution(self.axes, mean=mean, cov=covariance) # Use defaults
|
||||
|
||||
def sample_point_location_from_distribution(self):
|
||||
"""Samples from the current latent distribution"""
|
||||
mean = self.latent_distribution.mean
|
||||
cov = self.latent_distribution.cov
|
||||
point = np.random.multivariate_normal(mean, cov)
|
||||
# Make dot at correct location
|
||||
location = self.axes.coords_to_point(point[0], point[1])
|
||||
|
||||
return location
|
||||
|
||||
def get_distribution_location(self):
|
||||
"""Returns mean of latent distribution in axes frame"""
|
||||
return self.axes.coords_to_point(self.latent_distribution.mean)
|
||||
|
||||
def construct_gaussian_point_cloud(self, mean, covariance, point_color=BLUE,
|
||||
num_points=200):
|
||||
"""Plots points sampled from a Gaussian with the given mean and covariance"""
|
||||
# Sample points from a Gaussian
|
||||
points = np.random.multivariate_normal(mean, covariance, num_points)
|
||||
# Add each point to the axes
|
||||
point_dots = VGroup()
|
||||
for point in points:
|
||||
point_location = self.axes.coords_to_point(*point)
|
||||
dot = Dot(point_location, color=point_color, radius=self.point_radius/2)
|
||||
point_dots.add(dot)
|
||||
|
||||
return point_dots
|
||||
|
||||
def make_forward_pass_animation(self):
|
||||
"""Forward pass animation"""
|
||||
# Make ellipse object corresponding to the latent distribution
|
||||
self.latent_distribution = GaussianDistribution(self.axes) # Use defaults
|
||||
# Create animation
|
||||
animations = []
|
||||
|
||||
#create_distribution = Create(self.latent_distribution.construct_gaussian_distribution(self.latent_distribution.mean, self.latent_distribution.cov)) #Create(self.latent_distribution)
|
||||
create_distribution = Create(self.latent_distribution.ellipses)
|
||||
animations.append(create_distribution)
|
||||
|
||||
animation_group = AnimationGroup(*animations)
|
||||
|
||||
return animation_group
|
||||
|
||||
@override_animation(Create)
|
||||
def _create_embedding_layer(self, **kwargs):
|
||||
# Plot each point at once
|
||||
point_animations = []
|
||||
for point in self.point_cloud:
|
||||
point_animations.append(GrowFromCenter(point))
|
||||
|
||||
point_animation = AnimationGroup(*point_animations, lag_ratio=1.0, run_time=2.5)
|
||||
|
||||
return point_animation
|
||||
|
||||
class FeedForwardToEmbedding(ConnectiveLayer):
|
||||
"""Feed Forward to Embedding Layer"""
|
||||
|
||||
def __init__(self, input_layer, output_layer, animation_dot_color=RED, dot_radius=0.03):
|
||||
super().__init__(input_layer, output_layer)
|
||||
self.feed_forward_layer = input_layer
|
||||
self.embedding_layer = output_layer
|
||||
self.animation_dot_color = animation_dot_color
|
||||
self.dot_radius = dot_radius
|
||||
|
||||
def make_forward_pass_animation(self, run_time=1.5):
|
||||
"""Makes dots converge on a specific location"""
|
||||
# Find point to converge on by sampling from gaussian distribution
|
||||
location = self.embedding_layer.sample_point_location_from_distribution()
|
||||
# Set the embedding layer latent distribution
|
||||
# Move to location
|
||||
animations = []
|
||||
# Move the dots to the centers of each of the nodes in the FeedForwardLayer
|
||||
dots = []
|
||||
for node in self.feed_forward_layer.node_group:
|
||||
new_dot = Dot(node.get_center(), radius=self.dot_radius, color=self.animation_dot_color)
|
||||
per_node_succession = Succession(
|
||||
Create(new_dot),
|
||||
new_dot.animate.move_to(location),
|
||||
)
|
||||
animations.append(per_node_succession)
|
||||
dots.append(new_dot)
|
||||
self.dots = VGroup(*dots)
|
||||
self.add(self.dots)
|
||||
# Follow up with remove animations
|
||||
remove_animations = []
|
||||
for dot in dots:
|
||||
remove_animations.append(FadeOut(dot))
|
||||
self.remove(self.dots)
|
||||
remove_animations = AnimationGroup(*remove_animations, run_time=0.2)
|
||||
animations = AnimationGroup(*animations)
|
||||
animation_group = Succession(animations, remove_animations, lag_ratio=1.0)
|
||||
|
||||
return animation_group
|
||||
|
||||
@override_animation(Create)
|
||||
def _create_embedding_layer(self, **kwargs):
|
||||
return AnimationGroup()
|
||||
|
||||
class EmbeddingToFeedForward(ConnectiveLayer):
|
||||
"""Feed Forward to Embedding Layer"""
|
||||
|
||||
def __init__(self, input_layer, output_layer, animation_dot_color=RED, dot_radius=0.03):
|
||||
super().__init__(input_layer, output_layer)
|
||||
self.feed_forward_layer = output_layer
|
||||
self.embedding_layer = input_layer
|
||||
self.animation_dot_color = animation_dot_color
|
||||
self.dot_radius = dot_radius
|
||||
|
||||
def make_forward_pass_animation(self, run_time=1.5):
|
||||
"""Makes dots diverge from the given location and move the decoder"""
|
||||
# Find point to converge on by sampling from gaussian distribution
|
||||
location = self.embedding_layer.sample_point_location_from_distribution()
|
||||
# Move to location
|
||||
animations = []
|
||||
# Move the dots to the centers of each of the nodes in the FeedForwardLayer
|
||||
dots = []
|
||||
for node in self.feed_forward_layer.node_group:
|
||||
new_dot = Dot(location, radius=self.dot_radius, color=self.animation_dot_color)
|
||||
per_node_succession = Succession(
|
||||
Create(new_dot),
|
||||
new_dot.animate.move_to(node.get_center()),
|
||||
)
|
||||
animations.append(per_node_succession)
|
||||
dots.append(new_dot)
|
||||
# Follow up with remove animations
|
||||
remove_animations = []
|
||||
for dot in dots:
|
||||
remove_animations.append(FadeOut(dot))
|
||||
remove_animations = AnimationGroup(*remove_animations, run_time=0.2)
|
||||
animations = AnimationGroup(*animations)
|
||||
animation_group = Succession(animations, remove_animations, lag_ratio=1.0)
|
||||
|
||||
return animation_group
|
||||
|
||||
@override_animation(Create)
|
||||
def _create_embedding_layer(self, **kwargs):
|
||||
return AnimationGroup()
|
||||
|
||||
class NeuralNetworkEmbeddingTestScene(Scene):
|
||||
|
||||
def construct(self):
|
||||
nne = EmbeddingLayer()
|
||||
mean = np.array([0, 0])
|
||||
cov = np.array([[5.0, 1.0], [0.0, 1.0]])
|
||||
|
||||
point_cloud = nne.construct_gaussian_point_cloud(mean, cov)
|
||||
nne.add(point_cloud)
|
||||
|
||||
gaussian = nne.construct_gaussian_distribution(mean, cov)
|
||||
nne.add(gaussian)
|
||||
|
||||
self.add(nne)
|
@ -1,93 +0,0 @@
|
||||
from manim import *
|
||||
from manim_ml.neural_network.layers import NeuralNetworkLayer
|
||||
import numpy as np
|
||||
import math
|
||||
|
||||
class NeuralNetworkEmbedding(NeuralNetworkLayer, Axes):
|
||||
"""NeuralNetwork embedding object that can show probability distributions"""
|
||||
|
||||
def __init__(self):
|
||||
super().__init__(NeuralNetworkEmbedding, self)
|
||||
|
||||
def compute_covariance_rotation_and_scale(self, covariance):
|
||||
# Get the eigenvectors and eigenvalues
|
||||
eigenvalues, eigenvectors = np.linalg.eig(covariance)
|
||||
y, x = eigenvectors[0, 1], eigenvectors[0, 0]
|
||||
print(eigenvectors[0])
|
||||
angle = math.atan(x / y) # x over y to denote the angle between y axis and vector
|
||||
# Calculate the width and height
|
||||
height = np.abs(eigenvalues[0])
|
||||
width = np.abs(eigenvalues[1])
|
||||
return angle, width, height
|
||||
|
||||
def construct_gaussian_distribution(self, mean, covariance, color=ORANGE,
|
||||
dot_radius=0.05, num_ellipses=4):
|
||||
"""Returns a 2d Gaussian distribution object with given mean and covariance"""
|
||||
# map mean and covariance to frame coordinates
|
||||
mean = self.coords_to_point(*mean)
|
||||
# Figure out the scale and angle of rotation
|
||||
rotation, width, height = self.compute_covariance_rotation_and_scale(covariance)
|
||||
# Make covariance ellipses
|
||||
opacity = 0.0
|
||||
ellipses = VGroup()
|
||||
for ellipse_number in range(num_ellipses):
|
||||
opacity += 1.0 / num_ellipses
|
||||
ellipse_width = width * (1 - opacity)
|
||||
ellipse_height = height * (1 - opacity)
|
||||
ellipse = Ellipse(
|
||||
width=ellipse_width,
|
||||
height=ellipse_height,
|
||||
color=color,
|
||||
fill_opacity=opacity,
|
||||
stroke_width=0.0
|
||||
)
|
||||
ellipse.move_to(mean)
|
||||
ellipse.rotate(rotation)
|
||||
ellipses.add(ellipse)
|
||||
|
||||
return ellipses
|
||||
|
||||
def construct_gaussian_point_cloud(self, mean, covariance, color=BLUE):
|
||||
"""Plots points sampled from a Gaussian with the given mean and covariance"""
|
||||
embedding = VGroup()
|
||||
# Sample points from a Gaussian
|
||||
num_points = 200
|
||||
standard_deviation = [0.9, 0.9]
|
||||
mean = [0, 0]
|
||||
points = np.random.normal(mean, standard_deviation, size=(num_points, 2))
|
||||
# Make an axes
|
||||
embedding.axes = Axes(
|
||||
x_range=[-3, 3],
|
||||
y_range=[-3, 3],
|
||||
x_length=2.2,
|
||||
y_length=2.2,
|
||||
tips=False,
|
||||
)
|
||||
# Add each point to the axes
|
||||
self.point_dots = VGroup()
|
||||
for point in points:
|
||||
point_location = embedding.axes.coords_to_point(*point)
|
||||
dot = Dot(point_location, color=self.point_color, radius=self.dot_radius/2)
|
||||
self.point_dots.add(dot)
|
||||
|
||||
embedding.add(self.point_dots)
|
||||
|
||||
return embedding
|
||||
|
||||
def make_forward_pass_animation(self):
|
||||
|
||||
pass
|
||||
|
||||
class NeuralNetworkEmbeddingTestScene(Scene):
|
||||
|
||||
def construct(self):
|
||||
nne = NeuralNetworkEmbedding()
|
||||
mean = np.array([0, 0])
|
||||
cov = np.array([[0.1, 0.8], [0.0, 0.8]])
|
||||
|
||||
point_cloud = nne.construct_gaussian_point_cloud(mean, cov)
|
||||
self.add(point_cloud)
|
||||
gaussian = nne.construct_gaussian_distribution(mean, cov)
|
||||
gaussian.scale(3)
|
||||
|
||||
self.add(gaussian)
|
128
manim_ml/neural_network/feed_forward.py
Normal file
128
manim_ml/neural_network/feed_forward.py
Normal file
@ -0,0 +1,128 @@
|
||||
from manim import *
|
||||
from manim_ml.neural_network.layers import VGroupNeuralNetworkLayer, ConnectiveLayer
|
||||
|
||||
class FeedForwardLayer(VGroupNeuralNetworkLayer):
|
||||
"""Handles rendering a layer for a neural network"""
|
||||
|
||||
def __init__(self, num_nodes, layer_buffer=SMALL_BUFF/2, node_radius=0.08,
|
||||
node_color=BLUE, node_outline_color=WHITE, rectangle_color=WHITE,
|
||||
node_spacing=0.3, rectangle_fill_color=BLACK, node_stroke_width=2.0,
|
||||
rectangle_stroke_width=2.0, animation_dot_color=RED):
|
||||
super(VGroupNeuralNetworkLayer, self).__init__()
|
||||
self.num_nodes = num_nodes
|
||||
self.layer_buffer = layer_buffer
|
||||
self.node_radius = node_radius
|
||||
self.node_color = node_color
|
||||
self.node_stroke_width = node_stroke_width
|
||||
self.node_outline_color = node_outline_color
|
||||
self.rectangle_stroke_width = rectangle_stroke_width
|
||||
self.rectangle_color = rectangle_color
|
||||
self.node_spacing = node_spacing
|
||||
self.rectangle_fill_color = rectangle_fill_color
|
||||
self.animation_dot_color = animation_dot_color
|
||||
|
||||
self.node_group = VGroup()
|
||||
|
||||
self._construct_neural_network_layer()
|
||||
|
||||
def _construct_neural_network_layer(self):
|
||||
"""Creates the neural network layer"""
|
||||
# Add Nodes
|
||||
for node_number in range(self.num_nodes):
|
||||
node_object = Circle(radius=self.node_radius, color=self.node_color,
|
||||
stroke_width=self.node_stroke_width)
|
||||
self.node_group.add(node_object)
|
||||
# Space the nodes
|
||||
# Assumes Vertical orientation
|
||||
for node_index, node_object in enumerate(self.node_group):
|
||||
location = node_index * self.node_spacing
|
||||
node_object.move_to([0, location, 0])
|
||||
# Create Surrounding Rectangle
|
||||
self.surrounding_rectangle = SurroundingRectangle(self.node_group, color=self.rectangle_color,
|
||||
fill_color=self.rectangle_fill_color, fill_opacity=1.0,
|
||||
buff=self.layer_buffer, stroke_width=self.rectangle_stroke_width)
|
||||
# Add the objects to the class
|
||||
self.add(self.surrounding_rectangle, self.node_group)
|
||||
|
||||
def make_forward_pass_animation(self):
|
||||
# make highlight animation
|
||||
succession = Succession(
|
||||
ApplyMethod(self.node_group.set_color, self.animation_dot_color, run_time=0.25),
|
||||
Wait(1.0),
|
||||
ApplyMethod(self.node_group.set_color, self.node_color, run_time=0.25),
|
||||
)
|
||||
|
||||
return succession
|
||||
|
||||
@override_animation(Create)
|
||||
def _create_animation(self, **kwargs):
|
||||
animations = []
|
||||
|
||||
animations.append(Create(self.surrounding_rectangle))
|
||||
|
||||
for node in self.node_group:
|
||||
animations.append(Create(node))
|
||||
|
||||
animation_group = AnimationGroup(*animations, lag_ratio=0.0)
|
||||
return animation_group
|
||||
|
||||
class FeedForwardToFeedForward(ConnectiveLayer):
|
||||
"""Layer for connecting FeedForward layer to FeedForwardLayer"""
|
||||
|
||||
def __init__(self, input_layer, output_layer, passing_flash=True,
|
||||
dot_radius=0.05, animation_dot_color=RED, edge_color=WHITE,
|
||||
edge_width=0.5):
|
||||
super().__init__(input_layer, output_layer)
|
||||
self.passing_flash = passing_flash
|
||||
self.edge_color = edge_color
|
||||
self.dot_radius = dot_radius
|
||||
self.animation_dot_color = animation_dot_color
|
||||
self.edge_width = edge_width
|
||||
|
||||
self.edges = self.construct_edges()
|
||||
self.add(self.edges)
|
||||
|
||||
def construct_edges(self):
|
||||
# Go through each node in the two layers and make a connecting line
|
||||
edges = []
|
||||
for node_i in self.input_layer.node_group:
|
||||
for node_j in self.output_layer.node_group:
|
||||
line = Line(node_i.get_center(), node_j.get_center(),
|
||||
color=self.edge_color, stroke_width=self.edge_width)
|
||||
edges.append(line)
|
||||
|
||||
edges = VGroup(*edges)
|
||||
return edges
|
||||
|
||||
def make_forward_pass_animation(self, run_time=1):
|
||||
"""Animation for passing information from one FeedForwardLayer to the next"""
|
||||
path_animations = []
|
||||
dots = []
|
||||
for edge in self.edges:
|
||||
dot = Dot(color=self.animation_dot_color, fill_opacity=1.0, radius=self.dot_radius)
|
||||
# Add to dots group
|
||||
dots.append(dot)
|
||||
# Make the animation
|
||||
if self.passing_flash:
|
||||
anim = ShowPassingFlash(edge.copy().set_color(self.animation_dot_color), time_width=0.2, run_time=3)
|
||||
else:
|
||||
anim = MoveAlongPath(dot, edge, run_time=run_time, rate_function=sigmoid)
|
||||
path_animations.append(anim)
|
||||
|
||||
if not self.passing_flash:
|
||||
dots = VGroup(*dots)
|
||||
self.add(dots)
|
||||
|
||||
path_animations = AnimationGroup(*path_animations)
|
||||
|
||||
return path_animations
|
||||
|
||||
@override_animation(Create)
|
||||
def _create_animation(self, **kwargs):
|
||||
animations = []
|
||||
|
||||
for edge in self.edges:
|
||||
animations.append(Create(edge))
|
||||
|
||||
animation_group = AnimationGroup(*animations, lag_ratio=0.0)
|
||||
return animation_group
|
115
manim_ml/neural_network/image.py
Normal file
115
manim_ml/neural_network/image.py
Normal file
@ -0,0 +1,115 @@
|
||||
|
||||
from manim import *
|
||||
from manim_ml.image import GrayscaleImageMobject
|
||||
from manim_ml.neural_network.layers import ConnectiveLayer, NeuralNetworkLayer
|
||||
|
||||
class ImageLayer(NeuralNetworkLayer):
|
||||
"""Single Image Layer for Neural Network"""
|
||||
|
||||
def __init__(self, numpy_image, height=1.5):
|
||||
super().__init__()
|
||||
self.set_z_index(1)
|
||||
self.numpy_image = numpy_image
|
||||
if len(np.shape(self.numpy_image)) == 2:
|
||||
# Assumed Grayscale
|
||||
self.image_mobject = GrayscaleImageMobject(self.numpy_image, height=height)
|
||||
elif len(np.shape(self.numpy_image)) == 3:
|
||||
# Assumed RGB
|
||||
self.image_mobject = ImageMobject(self.numpy_image)
|
||||
self.add(self.image_mobject)
|
||||
"""
|
||||
# Make an invisible box of the same width as the image object so that
|
||||
# methods like get_right() work correctly.
|
||||
self.invisible_rectangle = SurroundingRectangle(self.image_mobject, color=WHITE)
|
||||
self.invisible_rectangle.set_fill(WHITE, opacity=0.0)
|
||||
# self.invisible_rectangle.set_stroke(WHITE, opacity=0.0)
|
||||
self.invisible_rectangle.move_to(self.image_mobject.get_center())
|
||||
self.add(self.invisible_rectangle)
|
||||
"""
|
||||
|
||||
@override_animation(Create)
|
||||
def _create_animation(self, **kwargs):
|
||||
return FadeIn(self.image_mobject)
|
||||
|
||||
def make_forward_pass_animation(self):
|
||||
return Create(self.image_mobject)
|
||||
|
||||
def move_to(self, location):
|
||||
"""Override of move to"""
|
||||
self.image_mobject.move_to(location)
|
||||
|
||||
def get_right(self):
|
||||
"""Override get right"""
|
||||
return self.image_mobject.get_right()
|
||||
|
||||
@property
|
||||
def width(self):
|
||||
return self.image_mobject.width
|
||||
|
||||
class ImageToFeedForward(ConnectiveLayer):
|
||||
"""Image Layer to FeedForward layer"""
|
||||
|
||||
def __init__(self, input_layer, output_layer, animation_dot_color=RED,
|
||||
dot_radius=0.05):
|
||||
self.animation_dot_color = animation_dot_color
|
||||
self.dot_radius = dot_radius
|
||||
|
||||
self.feed_forward_layer = output_layer
|
||||
self.image_layer = input_layer
|
||||
super().__init__(input_layer, output_layer)
|
||||
|
||||
def make_forward_pass_animation(self):
|
||||
"""Makes dots diverge from the given location and move to the feed forward nodes decoder"""
|
||||
animations = []
|
||||
dots = []
|
||||
image_mobject = self.image_layer.image_mobject
|
||||
# Move the dots to the centers of each of the nodes in the FeedForwardLayer
|
||||
image_location = image_mobject.get_center()
|
||||
for node in self.feed_forward_layer.node_group:
|
||||
new_dot = Dot(image_location, radius=self.dot_radius, color=self.animation_dot_color)
|
||||
per_node_succession = Succession(
|
||||
Create(new_dot),
|
||||
new_dot.animate.move_to(node.get_center()),
|
||||
)
|
||||
animations.append(per_node_succession)
|
||||
dots.append(new_dot)
|
||||
self.add(VGroup(*dots))
|
||||
animation_group = AnimationGroup(*animations)
|
||||
return animation_group
|
||||
|
||||
@override_animation(Create)
|
||||
def _create_override(self):
|
||||
return AnimationGroup()
|
||||
|
||||
class FeedForwardToImage(ConnectiveLayer):
|
||||
"""Image Layer to FeedForward layer"""
|
||||
|
||||
def __init__(self, input_layer, output_layer, animation_dot_color=RED,
|
||||
dot_radius=0.05):
|
||||
self.animation_dot_color = animation_dot_color
|
||||
self.dot_radius = dot_radius
|
||||
|
||||
self.feed_forward_layer = input_layer
|
||||
self.image_layer = output_layer
|
||||
super().__init__(input_layer, output_layer)
|
||||
|
||||
def make_forward_pass_animation(self):
|
||||
"""Makes dots diverge from the given location and move to the feed forward nodes decoder"""
|
||||
animations = []
|
||||
image_mobject = self.image_layer.image_mobject
|
||||
# Move the dots to the centers of each of the nodes in the FeedForwardLayer
|
||||
image_location = image_mobject.get_center()
|
||||
for node in self.feed_forward_layer.node_group:
|
||||
new_dot = Dot(node.get_center(), radius=self.dot_radius, color=self.animation_dot_color)
|
||||
per_node_succession = Succession(
|
||||
Create(new_dot),
|
||||
new_dot.animate.move_to(image_location),
|
||||
)
|
||||
animations.append(per_node_succession)
|
||||
|
||||
animation_group = AnimationGroup(*animations)
|
||||
return animation_group
|
||||
|
||||
@override_animation(Create)
|
||||
def _create_override(self):
|
||||
return AnimationGroup()
|
@ -1,102 +1,40 @@
|
||||
from typing import overload
|
||||
from manim import *
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
from matplotlib import animation
|
||||
from manim_ml.image import GrayscaleImageMobject
|
||||
|
||||
class NeuralNetworkLayer(ABC, VGroup):
|
||||
class NeuralNetworkLayer(ABC, Group):
|
||||
"""Abstract Neural Network Layer class"""
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
super(Group, self).__init__()
|
||||
self.set_z_index(1)
|
||||
|
||||
@abstractmethod
|
||||
def make_forward_pass_animation(self):
|
||||
pass
|
||||
|
||||
class FeedForwardLayer(NeuralNetworkLayer):
|
||||
"""Handles rendering a layer for a neural network"""
|
||||
def __repr__(self):
|
||||
return f"{type(self).__name__}"
|
||||
|
||||
def __init__(self, num_nodes, layer_buffer=SMALL_BUFF/2, node_radius=0.08,
|
||||
node_color=BLUE, node_outline_color=WHITE, rectangle_color=WHITE,
|
||||
node_spacing=0.3, rectangle_fill_color=BLACK, node_stroke_width=2.0,
|
||||
rectangle_stroke_width=2.0, animation_dot_color=RED):
|
||||
class VGroupNeuralNetworkLayer(NeuralNetworkLayer):
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
super(NeuralNetworkLayer, self).__init__()
|
||||
self.num_nodes = num_nodes
|
||||
self.layer_buffer = layer_buffer
|
||||
self.node_radius = node_radius
|
||||
self.node_color = node_color
|
||||
self.node_stroke_width = node_stroke_width
|
||||
self.node_outline_color = node_outline_color
|
||||
self.rectangle_stroke_width = rectangle_stroke_width
|
||||
self.rectangle_color = rectangle_color
|
||||
self.node_spacing = node_spacing
|
||||
self.rectangle_fill_color = rectangle_fill_color
|
||||
self.animation_dot_color = animation_dot_color
|
||||
|
||||
self.node_group = VGroup()
|
||||
|
||||
self._construct_neural_network_layer()
|
||||
|
||||
def _construct_neural_network_layer(self):
|
||||
"""Creates the neural network layer"""
|
||||
# Add Nodes
|
||||
for node_number in range(self.num_nodes):
|
||||
node_object = Circle(radius=self.node_radius, color=self.node_color,
|
||||
stroke_width=self.node_stroke_width)
|
||||
self.node_group.add(node_object)
|
||||
# Space the nodes
|
||||
# Assumes Vertical orientation
|
||||
for node_index, node_object in enumerate(self.node_group):
|
||||
location = node_index * self.node_spacing
|
||||
node_object.move_to([0, location, 0])
|
||||
# Create Surrounding Rectangle
|
||||
self.surrounding_rectangle = SurroundingRectangle(self.node_group, color=self.rectangle_color,
|
||||
fill_color=self.rectangle_fill_color, fill_opacity=1.0,
|
||||
buff=self.layer_buffer, stroke_width=self.rectangle_stroke_width)
|
||||
# Add the objects to the class
|
||||
self.add(self.surrounding_rectangle, self.node_group)
|
||||
|
||||
@abstractmethod
|
||||
def make_forward_pass_animation(self):
|
||||
# make highlight animation
|
||||
succession = Succession(
|
||||
ApplyMethod(self.node_group.set_color, self.animation_dot_color, run_time=0.25),
|
||||
Wait(1.0),
|
||||
ApplyMethod(self.node_group.set_color, self.node_color, run_time=0.25),
|
||||
)
|
||||
pass
|
||||
|
||||
return succession
|
||||
class ConnectiveLayer(VGroupNeuralNetworkLayer):
|
||||
"""Forward pass animation for a given pair of layers"""
|
||||
|
||||
@override_animation(Create)
|
||||
def _create_animation(self, **kwargs):
|
||||
animations = []
|
||||
@abstractmethod
|
||||
def __init__(self, input_layer, output_layer):
|
||||
super(VGroupNeuralNetworkLayer, self).__init__()
|
||||
self.input_layer = input_layer
|
||||
self.output_layer = output_layer
|
||||
|
||||
animations.append(Create(self.surrounding_rectangle))
|
||||
|
||||
for node in self.node_group:
|
||||
animations.append(Create(node))
|
||||
|
||||
animation_group = AnimationGroup(*animations, lag_ratio=0.0)
|
||||
return animation_group
|
||||
|
||||
class ImageLayer(NeuralNetworkLayer):
|
||||
"""Image Layer for Neural Network"""
|
||||
|
||||
def __init__(self, numpy_image, height=1.5):
|
||||
super().__init__()
|
||||
self.numpy_image = numpy_image
|
||||
if len(np.shape(self.numpy_image)) == 2:
|
||||
# Assumed Grayscale
|
||||
self.image_mobject = GrayscaleImageMobject(self.numpy_image, height=height)
|
||||
elif len(np.shape(self.numpy_image)) == 3:
|
||||
# Assumed RGB
|
||||
self.image_mobject = ImageMobject(self.numpy_image)
|
||||
|
||||
@override_animation(Create)
|
||||
def _create_animation(self, **kwargs):
|
||||
return FadeIn(self.image_mobject)
|
||||
self.set_z_index(-1)
|
||||
|
||||
@abstractmethod
|
||||
def make_forward_pass_animation(self):
|
||||
return Create(self.image_mobject)
|
||||
|
||||
@property
|
||||
def width(self):
|
||||
return self.image_mobject.width
|
||||
pass
|
||||
|
@ -10,23 +10,27 @@ Example:
|
||||
NeuralNetwork(layer_node_count)
|
||||
"""
|
||||
from manim import *
|
||||
from matplotlib import animation
|
||||
from numpy import isin
|
||||
import warnings
|
||||
from manim_ml.neural_network.layers import FeedForwardLayer, ImageLayer
|
||||
from manim_ml.neural_network.connective_layers import FeedForwardToFeedForward, ImageToFeedForward
|
||||
import textwrap
|
||||
|
||||
class NeuralNetwork(VGroup):
|
||||
from numpy import string_
|
||||
|
||||
from manim_ml.neural_network.embedding import EmbeddingLayer, EmbeddingToFeedForward, FeedForwardToEmbedding
|
||||
from manim_ml.neural_network.feed_forward import FeedForwardLayer, FeedForwardToFeedForward
|
||||
from manim_ml.neural_network.image import ImageLayer, ImageToFeedForward, FeedForwardToImage
|
||||
|
||||
class NeuralNetwork(Group):
|
||||
|
||||
def __init__(self, input_layers, edge_color=WHITE, layer_spacing=0.8,
|
||||
animation_dot_color=RED, edge_width=1.5, dot_radius=0.03):
|
||||
super().__init__()
|
||||
self.input_layers = VGroup(*input_layers)
|
||||
super(Group, self).__init__()
|
||||
self.input_layers = Group(*input_layers)
|
||||
self.edge_width = edge_width
|
||||
self.edge_color = edge_color
|
||||
self.layer_spacing = layer_spacing
|
||||
self.animation_dot_color = animation_dot_color
|
||||
self.dot_radius = dot_radius
|
||||
self.created = False
|
||||
# TODO take layer_node_count [0, (1, 2), 0]
|
||||
# and make it have explicit distinct subspaces
|
||||
self._place_layers()
|
||||
@ -34,62 +38,87 @@ class NeuralNetwork(VGroup):
|
||||
# Center the whole diagram by default
|
||||
self.all_layers.move_to(ORIGIN)
|
||||
self.add(self.all_layers)
|
||||
# print nn
|
||||
print(repr(self))
|
||||
|
||||
def _place_layers(self):
|
||||
"""Creates the neural network"""
|
||||
# TODO implement more sophisticated custom layouts
|
||||
# Default: Linear layout
|
||||
for layer_index in range(1, len(self.input_layers)):
|
||||
previous_layer = self.input_layers[layer_index - 1]
|
||||
current_layer = self.input_layers[layer_index]
|
||||
# Manage spacing
|
||||
# Default: half each width times 2
|
||||
spacing = config.frame_width * 0.05 + (previous_layer.width / 2 + current_layer.width / 2)
|
||||
current_layer.move_to(previous_layer.get_center())
|
||||
current_layer.shift(np.array([spacing, 0, 0]))
|
||||
# Add layer to VGroup
|
||||
|
||||
current_layer.move_to(previous_layer)
|
||||
shift_vector = np.array([(previous_layer.get_width()/2 + current_layer.get_width()/2) + 0.2, 0, 0])
|
||||
current_layer.shift(shift_vector)
|
||||
# Handle layering
|
||||
self.input_layers.set_z_index(2)
|
||||
|
||||
def _construct_connective_layers(self):
|
||||
"""Draws connecting lines between layers"""
|
||||
connective_layers = VGroup()
|
||||
all_layers = VGroup()
|
||||
connective_layers = Group()
|
||||
all_layers = Group()
|
||||
for layer_index in range(len(self.input_layers) - 1):
|
||||
current_layer = self.input_layers[layer_index]
|
||||
all_layers.add(current_layer)
|
||||
next_layer = self.input_layers[layer_index + 1]
|
||||
|
||||
# Check if layer is actually a nested NeuralNetwork
|
||||
if isinstance(current_layer, NeuralNetwork):
|
||||
# Last layer of the current layer
|
||||
current_layer = current_layer.all_layers[-1]
|
||||
if isinstance(next_layer, NeuralNetwork):
|
||||
# First layer of the next layer
|
||||
next_layer = next_layer.all_layers[0]
|
||||
if isinstance(current_layer, FeedForwardLayer) \
|
||||
and isinstance(next_layer, FeedForwardLayer):
|
||||
# FeedForward to Image
|
||||
edge_layer = FeedForwardToFeedForward(current_layer, next_layer,
|
||||
edge_width=self.edge_width)
|
||||
connective_layers.add(edge_layer)
|
||||
all_layers.add(edge_layer)
|
||||
elif isinstance(current_layer, ImageLayer) \
|
||||
and isinstance(next_layer, FeedForwardLayer):
|
||||
# Image to FeedForward
|
||||
image_to_feedforward = ImageToFeedForward(current_layer, next_layer, dot_radius=self.dot_radius)
|
||||
connective_layers.add(image_to_feedforward)
|
||||
all_layers.add(image_to_feedforward)
|
||||
elif isinstance(current_layer, FeedForwardLayer) \
|
||||
and isinstance(next_layer, ImageLayer):
|
||||
# Image to FeedForward
|
||||
feed_forward_to_image = FeedForwardToImage(current_layer, next_layer, dot_radius=self.dot_radius)
|
||||
connective_layers.add(feed_forward_to_image)
|
||||
all_layers.add(feed_forward_to_image)
|
||||
elif isinstance(current_layer, FeedForwardLayer) \
|
||||
and isinstance(next_layer, EmbeddingLayer):
|
||||
# FeedForward to Embedding
|
||||
layer = FeedForwardToEmbedding(current_layer, next_layer,
|
||||
animation_dot_color=self.animation_dot_color, dot_radius=self.dot_radius)
|
||||
connective_layers.add(layer)
|
||||
all_layers.add(layer)
|
||||
elif isinstance(current_layer, EmbeddingLayer) \
|
||||
and isinstance(next_layer, FeedForwardLayer):
|
||||
# Embedding to FeedForward
|
||||
layer = EmbeddingToFeedForward(current_layer, next_layer,
|
||||
animation_dot_color=self.animation_dot_color, dot_radius=self.dot_radius)
|
||||
connective_layers.add(layer)
|
||||
all_layers.add(layer)
|
||||
else:
|
||||
warnings.warn(f"Warning: unimplemented connection for layer types: {type(current_layer)} and {type(next_layer)}")
|
||||
# Add final layer
|
||||
all_layers.add(self.input_layers[-1])
|
||||
# Handle layering
|
||||
connective_layers.set_z_index(0)
|
||||
return connective_layers, all_layers
|
||||
|
||||
def make_forward_pass_animation(self, run_time=10, passing_flash=True):
|
||||
"""Generates an animation for feed forward propogation"""
|
||||
all_animations = []
|
||||
|
||||
for layer_index, layer in enumerate(self.input_layers[:-1]):
|
||||
layer_forward_pass = layer.make_forward_pass_animation()
|
||||
all_animations.append(layer_forward_pass)
|
||||
|
||||
connective_layer = self.connective_layers[layer_index]
|
||||
connective_forward_pass = connective_layer.make_forward_pass_animation()
|
||||
all_animations.append(connective_forward_pass)
|
||||
|
||||
# Do last layer animation
|
||||
last_layer_forward_pass = self.input_layers[-1].make_forward_pass_animation()
|
||||
all_animations.append(last_layer_forward_pass)
|
||||
@ -101,10 +130,14 @@ class NeuralNetwork(VGroup):
|
||||
@override_animation(Create)
|
||||
def _create_override(self, **kwargs):
|
||||
"""Overrides Create animation"""
|
||||
# Stop the neural network from being created twice
|
||||
if self.created:
|
||||
return AnimationGroup()
|
||||
self.created = True
|
||||
# Create each layer one by one
|
||||
animations = []
|
||||
|
||||
for layer in self.all_layers:
|
||||
print(layer)
|
||||
animation = Create(layer)
|
||||
animations.append(animation)
|
||||
|
||||
@ -112,6 +145,24 @@ class NeuralNetwork(VGroup):
|
||||
|
||||
return animation_group
|
||||
|
||||
def remove_layer(self, layer_index):
|
||||
"""Removes layer at given index and returns animation for removing the layer"""
|
||||
raise NotImplementedError()
|
||||
|
||||
def add_layer(self, layer):
|
||||
"""Adds layer and returns animation for adding action"""
|
||||
raise NotImplementedError()
|
||||
|
||||
def __repr__(self):
|
||||
"""Print string representation of layers"""
|
||||
inner_string = ""
|
||||
for layer in self.all_layers:
|
||||
inner_string += f"{repr(layer)},\n"
|
||||
inner_string = textwrap.indent(inner_string, " ")
|
||||
|
||||
string_repr = "NeuralNetwork([\n" + inner_string + "])"
|
||||
return string_repr
|
||||
|
||||
class FeedForwardNeuralNetwork(NeuralNetwork):
|
||||
"""NeuralNetwork with just feed forward layers"""
|
||||
|
||||
|
113
manim_ml/neural_network/variational_autoencoder.py
Normal file
113
manim_ml/neural_network/variational_autoencoder.py
Normal file
@ -0,0 +1,113 @@
|
||||
"""Variational Autoencoder Manim Visualizations
|
||||
|
||||
In this module I define Manim visualizations for Variational Autoencoders
|
||||
and Traditional Autoencoders.
|
||||
|
||||
"""
|
||||
from types import WrapperDescriptorType
|
||||
from manim import *
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
import os
|
||||
from manim_ml.neural_network.feed_forward import FeedForwardLayer
|
||||
from manim_ml.neural_network.image import ImageLayer
|
||||
from manim_ml.neural_network.neural_network import NeuralNetwork
|
||||
from manim_ml.neural_network.embedding import EmbeddingLayer
|
||||
|
||||
class VariationalAutoencoder(VGroup):
|
||||
"""Variational Autoencoder Manim Visualization"""
|
||||
|
||||
def __init__(self, encoder_nodes_per_layer=[5, 3], decoder_nodes_per_layer=[3, 5],
|
||||
point_color=BLUE, dot_radius=0.05, ellipse_stroke_width=1.0,
|
||||
layer_spacing=0.5):
|
||||
super(VGroup, self).__init__()
|
||||
self.encoder_nodes_per_layer = encoder_nodes_per_layer
|
||||
self.decoder_nodes_per_layer = decoder_nodes_per_layer
|
||||
self.point_color = point_color
|
||||
self.dot_radius = dot_radius
|
||||
self.layer_spacing = layer_spacing
|
||||
self.ellipse_stroke_width = ellipse_stroke_width
|
||||
# Make the VMobjects
|
||||
self.neural_network, self.embedding_layer = self._construct_neural_network()
|
||||
|
||||
def _construct_neural_network(self):
|
||||
"""Makes the VAE encoder, embedding layer, and decoder"""
|
||||
embedding_layer = EmbeddingLayer()
|
||||
|
||||
neural_network = NeuralNetwork([
|
||||
FeedForwardLayer(5),
|
||||
FeedForwardLayer(3),
|
||||
embedding_layer,
|
||||
FeedForwardLayer(3),
|
||||
FeedForwardLayer(5)
|
||||
])
|
||||
|
||||
return neural_network, embedding_layer
|
||||
|
||||
@override_animation(Create)
|
||||
def _create_vae(self):
|
||||
return Create(self.neural_network)
|
||||
|
||||
def make_triplet_forward_pass(self, triplet):
|
||||
pass
|
||||
|
||||
def make_image_forward_pass(self, input_image, output_image, run_time=1.5):
|
||||
"""Override forward pass animation specific to a VAE"""
|
||||
# Make a wrapper NN with images
|
||||
wrapper_neural_network = NeuralNetwork([
|
||||
ImageLayer(input_image),
|
||||
self.neural_network,
|
||||
ImageLayer(output_image)
|
||||
])
|
||||
# Make animation
|
||||
animation_group = AnimationGroup(
|
||||
Create(wrapper_neural_network),
|
||||
wrapper_neural_network.make_forward_pass_animation(),
|
||||
lag_ratio=1.0
|
||||
)
|
||||
|
||||
return animation_group
|
||||
|
||||
"""
|
||||
# Make encoder forward pass
|
||||
encoder_forward_pass = self.encoder.make_forward_propagation_animation(run_time=per_unit_runtime)
|
||||
# Make red dot in embedding
|
||||
mean = [1.0, 1.5]
|
||||
mean_point = self.embedding.axes.coords_to_point(*mean)
|
||||
std = [0.8, 1.2]
|
||||
# Make the dot convergence animation
|
||||
dot_convergence_animation = self.make_dot_convergence_animation(mean, run_time=per_unit_runtime)
|
||||
encoding_succesion = Succession(
|
||||
encoder_forward_pass,
|
||||
dot_convergence_animation
|
||||
)
|
||||
# Make an ellipse centered at mean_point witAnimationGraph std outline
|
||||
center_dot = Dot(mean_point, radius=self.dot_radius, color=RED)
|
||||
ellipse = Ellipse(width=std[0], height=std[1], color=RED, fill_opacity=0.3, stroke_width=self.ellipse_stroke_width)
|
||||
ellipse.move_to(mean_point)
|
||||
self.distribution_objects = VGroup(
|
||||
center_dot,
|
||||
ellipse
|
||||
)
|
||||
# Make ellipse animation
|
||||
ellipse_animation = AnimationGroup(
|
||||
GrowFromCenter(center_dot),
|
||||
GrowFromCenter(ellipse),
|
||||
)
|
||||
# Make the dot divergence animation
|
||||
sampled_point = [0.51, 1.0]
|
||||
divergence_point = self.embedding.axes.coords_to_point(*sampled_point)
|
||||
dot_divergence_animation = self.make_dot_divergence_animation(divergence_point, run_time=per_unit_runtime)
|
||||
# Make decoder foward pass
|
||||
decoder_forward_pass = self.decoder.make_forward_propagation_animation(run_time=per_unit_runtime)
|
||||
# Add the animations to the group
|
||||
animation_group = AnimationGroup(
|
||||
FadeIn(self.input_image),
|
||||
encoding_succesion,
|
||||
ellipse_animation,
|
||||
dot_divergence_animation,
|
||||
decoder_forward_pass,
|
||||
FadeIn(self.output_image),
|
||||
lag_ratio=1,
|
||||
)
|
||||
"""
|
@ -1,5 +1,7 @@
|
||||
from manim import *
|
||||
from manim_ml.neural_network.layers import FeedForwardLayer, ImageLayer
|
||||
from manim_ml.neural_network.embedding import EmbeddingLayer
|
||||
from manim_ml.neural_network.feed_forward import FeedForwardLayer
|
||||
from manim_ml.neural_network.image import ImageLayer
|
||||
from manim_ml.neural_network.neural_network import NeuralNetwork, FeedForwardNeuralNetwork
|
||||
from PIL import Image
|
||||
import numpy as np
|
||||
@ -53,7 +55,42 @@ class ImageNeuralNetworkScene(Scene):
|
||||
nn.move_to(ORIGIN)
|
||||
self.add(nn)
|
||||
# Play animation
|
||||
self.play(nn.make_forward_pass_animation(run_time=10))
|
||||
self.play(nn.make_forward_pass_animation(run_time=5))
|
||||
self.play(nn.make_forward_pass_animation(run_time=5))
|
||||
|
||||
|
||||
class EmbeddingNNScene(Scene):
|
||||
|
||||
def construct(self):
|
||||
embedding_layer = EmbeddingLayer()
|
||||
|
||||
neural_network = NeuralNetwork([
|
||||
FeedForwardLayer(5),
|
||||
FeedForwardLayer(3),
|
||||
embedding_layer,
|
||||
FeedForwardLayer(3),
|
||||
FeedForwardLayer(5)
|
||||
])
|
||||
|
||||
self.play(Create(neural_network))
|
||||
|
||||
self.play(neural_network.make_forward_pass_animation(run_time=5))
|
||||
|
||||
class RecursiveNNScene(Scene):
|
||||
|
||||
def construct(self):
|
||||
nn = NeuralNetwork([
|
||||
NeuralNetwork([
|
||||
FeedForwardLayer(3),
|
||||
FeedForwardLayer(2)
|
||||
]),
|
||||
NeuralNetwork([
|
||||
FeedForwardLayer(2),
|
||||
FeedForwardLayer(3)
|
||||
])
|
||||
])
|
||||
|
||||
self.play(Create(nn))
|
||||
|
||||
if __name__ == "__main__":
|
||||
"""Render all scenes"""
|
||||
|
34
tests/test_variational_autoencoder.py
Normal file
34
tests/test_variational_autoencoder.py
Normal file
@ -0,0 +1,34 @@
|
||||
from manim import *
|
||||
from PIL import Image
|
||||
from manim_ml.neural_network.embedding import EmbeddingLayer, GaussianDistribution
|
||||
from manim_ml.neural_network.feed_forward import FeedForwardLayer
|
||||
from manim_ml.neural_network.image import ImageLayer
|
||||
from manim_ml.neural_network.neural_network import NeuralNetwork
|
||||
|
||||
config.pixel_height = 720
|
||||
config.pixel_width = 1280
|
||||
config.frame_height = 6.0
|
||||
config.frame_width = 6.0
|
||||
|
||||
class GaussianScene(Scene):
|
||||
|
||||
def construct(self):
|
||||
embedding_layer = EmbeddingLayer()
|
||||
|
||||
image = Image.open('images/image.jpeg')
|
||||
numpy_image = np.asarray(image)
|
||||
# Make nn
|
||||
neural_network = NeuralNetwork([
|
||||
ImageLayer(numpy_image, height=1.4),
|
||||
FeedForwardLayer(5),
|
||||
FeedForwardLayer(3),
|
||||
embedding_layer,
|
||||
FeedForwardLayer(3),
|
||||
FeedForwardLayer(5),
|
||||
ImageLayer(numpy_image, height=1.4),
|
||||
])
|
||||
|
||||
neural_network.scale(1.3)
|
||||
|
||||
self.play(Create(neural_network))
|
||||
self.play(neural_network.make_forward_pass_animation(run_time=15))
|
Reference in New Issue
Block a user