"Got a basic working animation of a CNN in 3D.

This commit is contained in:
Alec Helbling
2022-12-26 02:01:56 -05:00
parent 0489dd5745
commit 330ba170a0
15 changed files with 789 additions and 198 deletions

View File

@ -0,0 +1,96 @@
from manim import *
from manim_ml.neural_network.layers.parent_layers import ThreeDLayer, VGroupNeuralNetworkLayer
from manim_ml.gridded_rectangle import GriddedRectangle
import numpy as np
class Convolutional3DLayer(VGroupNeuralNetworkLayer, ThreeDLayer):
"""Handles rendering a convolutional layer for a nn"""
def __init__(self, num_feature_maps, feature_map_width, feature_map_height,
filter_width, filter_height, cell_width=0.2, filter_spacing=0.1, color=BLUE,
pulse_color=ORANGE, filter_color=ORANGE, stride=1, stroke_width=2.0, **kwargs):
super(VGroupNeuralNetworkLayer, self).__init__(**kwargs)
self.num_feature_maps = num_feature_maps
self.feature_map_height = feature_map_height
self.filter_color = filter_color
self.feature_map_width = feature_map_width
self.filter_width = filter_width
self.filter_height = filter_height
self.cell_width = cell_width
self.filter_spacing = filter_spacing
self.color = color
self.pulse_color = pulse_color
self.stride = stride
self.stroke_width = stroke_width
# Make the feature maps
self.feature_maps = self.construct_feature_maps()
self.add(self.feature_maps)
def construct_feature_maps(self):
"""Creates the neural network layer"""
# Draw rectangles that are filled in with opacity
feature_maps = VGroup()
for filter_index in range(self.num_feature_maps):
rectangle = GriddedRectangle(
center=[0, 0, filter_index * self.filter_spacing], # Center coordinate
color=self.color,
height=self.feature_map_height * self.cell_width,
width=self.feature_map_width * self.cell_width,
fill_color=self.color,
fill_opacity=0.2,
stroke_color=self.color,
stroke_width=self.stroke_width,
# grid_xstep=self.cell_width,
# grid_ystep=self.cell_width,
# grid_stroke_width=DEFAULT_STROKE_WIDTH/2
)
# Rotate about z axis
rectangle.rotate_about_origin(
90 * DEGREES,
np.array([0, 1, 0])
)
feature_maps.add(rectangle)
return feature_maps
def make_forward_pass_animation(
self,
run_time=5,
corner_pulses=False,
layer_args={},
**kwargs
):
"""Convolution forward pass animation"""
# Note: most of this animation is done in the Convolution3DToConvolution3D layer
print(f"Corner pulses: {corner_pulses}")
if corner_pulses:
passing_flashes = []
for line in self.corner_lines:
pulse = ShowPassingFlash(
line.copy()
.set_color(self.pulse_color)
.set_stroke(opacity=1.0),
time_width=0.5,
run_time=run_time,
rate_func=rate_functions.linear
)
passing_flashes.append(pulse)
# per_filter_run_time = run_time / len(self.feature_maps)
# Make animation group
animation_group = AnimationGroup(
*passing_flashes,
# filter_flashes
)
else:
animation_group = AnimationGroup()
return animation_group
def scale(self, scale_factor, **kwargs):
self.cell_width *= scale_factor
super().scale(scale_factor, **kwargs)
@override_animation(Create)
def _create_override(self, **kwargs):
return FadeIn(self.feature_maps)