Added epsilon nearest neighbor graph visualization.

This commit is contained in:
Alec Helbling
2022-07-26 23:47:20 -04:00
parent 58aec269cf
commit 0489dd5745

View File

@ -0,0 +1,175 @@
"""
Example where I draw an epsilon nearest neighbor graph animation
"""
from cProfile import label
from manim import *
from sklearn.datasets import make_moons
from sklearn.cluster import SpectralClustering
import numpy as np
# Make the specific scene
config.pixel_height = 1200
config.pixel_width = 1200
config.frame_height = 12.0
config.frame_width = 12.0
def make_moon_points(num_samples=100, noise=0.1, random_seed=1):
"""Make two half moon point shapes"""
# Make sure the points are normalized
X, y = make_moons(n_samples=num_samples, noise=noise, random_state=random_seed)
X -= np.mean(X, axis=0)
X /= np.std(X, axis=0)
X[:, 1] += 0.3
# X[:, 0] /= 2 # squeeze width
return X
def make_epsilon_balls(epsilon_value, points, axes, ball_color=RED, opacity=0.0):
"""Draws epsilon balls """
balls = []
for point in points:
ball = Circle(epsilon_value, color=ball_color, fill_opacity=opacity)
global_location = axes.coords_to_point(*point)
ball.move_to(global_location)
balls.append(ball)
return VGroup(*balls)
def make_epsilon_graph(epsilon_value, dots, points, edge_color=ORANGE):
"""Makes an epsilon nearest neighbor graph for the given dots"""
# First compute the adjacency matrix from the epsilon value and the points
num_dots = len(dots)
adjacency_matrix = np.zeros((num_dots, num_dots))
# Note: just doing lower triangular matrix
for i in range(num_dots):
for j in range(i):
dist = np.linalg.norm(dots[i].get_center() - dots[j].get_center())
is_connected = 1 if dist < epsilon_value else 0
adjacency_matrix[i, j] = is_connected
# Draw a graph based on the adjacency matrix
edges = []
for i in range(num_dots):
for j in range(i):
is_connected = adjacency_matrix[i, j]
if is_connected:
# Draw a connection between the corresponding dots
dot_a = dots[i]
dot_b = dots[j]
edge = Line(
dot_a.get_center(),
dot_b.get_center(),
color=edge_color,
stroke_width=3
)
edges.append(edge)
return VGroup(*edges), adjacency_matrix
def perform_spectral_clustering(adjacency_matrix):
"""Performs spectral clustering given adjacency matrix"""
clustering = SpectralClustering(
n_clusters=2,
affinity="precomputed",
random_state=0
).fit(adjacency_matrix)
labels = clustering.labels_
return labels
def make_color_change_animation(labels, dots, colors=[ORANGE, GREEN]):
"""Makes a color change animation """
anims = []
for index in range(len(labels)):
color = colors[labels[index]]
dot = dots[index]
anims.append(dot.animate.set_color(color))
return AnimationGroup(*anims, lag_ratio=0.0)
class EpsilonNearestNeighborScene(Scene):
def construct(self, num_points=200, dot_radius=0.1,
dot_color=BLUE, ball_color=WHITE, noise=0.1, ball_opacity=0.0,
random_seed=2):
# Make moon shape points
# Note: dot is the drawing object and point is the math concept
moon_points = make_moon_points(num_samples=num_points, noise=noise, random_seed=random_seed)
# Make an axes
axes = Axes(
x_range=[-6, 6, 1],
y_range=[-6, 6, 1],
x_length=12,
y_length=12,
tips=False,
axis_config={"stroke_color": "#000000"},
)
axes.scale(2.2)
self.add(axes)
# Draw points
dots = []
for point in moon_points:
axes_location = axes.coords_to_point(*point)
dot = Dot(axes_location, color=dot_color, radius=dot_radius, z_index=1)
dots.append(dot)
dots = VGroup(*dots)
self.play(Create(dots))
# Draw epsilon bar with initial value
epsilon_bar = NumberLine([0, 2], length=8, stroke_width=2, include_ticks=False, include_numbers=False)
epsilon_bar.shift(4.5*DOWN)
self.play(Create(epsilon_bar))
current_epsilon = ValueTracker(0.3)
epsilon_point = epsilon_bar.number_to_point(current_epsilon.get_value())
epsilon_dot = Dot(epsilon_point)
self.add(epsilon_dot)
label_location = epsilon_bar.number_to_point(1.0)
label_location -= DOWN * 0.1
label_text = MathTex("\epsilon").scale(1.5)
# label_text = Text("Epsilon")
label_text.move_to(epsilon_bar.get_center())
label_text.shift(DOWN*0.5)
self.add(label_text)
# Make an updater for the dot
def dot_updater(epsilon_dot):
# Get location on epsilon_bar
point_loc = epsilon_bar.number_to_point(current_epsilon.get_value())
epsilon_dot.move_to(point_loc)
epsilon_dot.add_updater(dot_updater)
# Make the epsilon balls
epsilon_balls = make_epsilon_balls(
current_epsilon.get_value(), moon_points, axes, ball_color=ball_color, opacity=ball_opacity
)
# Set up updater for radius of balls
def epsilon_balls_updater(epsilon_balls):
for ball in epsilon_balls:
ball.set_width(current_epsilon.get_value())
# Turn epsilon up and down
epsilon_balls.add_updater(epsilon_balls_updater)
# Fade in the initial balls
self.play(FadeIn(epsilon_balls), lag_ratio=0.0)
# Iterate through different values of epsilon
for value in [1.5, 0.5, 0.9]:
self.play(current_epsilon.animate.set_value(value), run_time=2.5)
# Perform clustering
epsilon_value = 0.9
# Show connecting graph
epsilon_graph, adjacency_matrix = make_epsilon_graph(
current_epsilon.get_value(),
dots,
moon_points,
edge_color=WHITE
)
self.play(FadeOut(epsilon_balls))
self.play(FadeIn(epsilon_graph))
# Fade out balls
self.play(Wait(1.5))
# Perform clustering
labels = perform_spectral_clustering(adjacency_matrix)
# Change the colors of the dots
color_change_animation = make_color_change_animation(labels, dots)
self.play(color_change_animation)
# Fade out graph edges
self.play(FadeOut(epsilon_graph))
self.play(Wait(5.0))