[BUG] update most examples.

This commit is contained in:
Yann Dubois
2022-08-28 19:11:56 -07:00
parent 0489dd5745
commit 1e69ea313d
14 changed files with 184 additions and 347 deletions

8
.idea/.gitignore generated vendored Normal file
View File

@ -0,0 +1,8 @@
# Default ignored files
/shelf/
/workspace.xml
# Editor-based HTTP Client requests
/httpRequests/
# Datasource local storage ignored files
/dataSources/
/dataSources.local.xml

12
.idea/ManimML.iml generated Normal file
View File

@ -0,0 +1,12 @@
<?xml version="1.0" encoding="UTF-8"?>
<module type="PYTHON_MODULE" version="4">
<component name="NewModuleRootManager">
<content url="file://$MODULE_DIR$" />
<orderEntry type="jdk" jdkName="Python 3.10 (Viz)" jdkType="Python SDK" />
<orderEntry type="sourceFolder" forTests="false" />
</component>
<component name="PyDocumentationSettings">
<option name="format" value="PLAIN" />
<option name="myDocStringFormat" value="Plain" />
</component>
</module>

View File

@ -0,0 +1,46 @@
<component name="InspectionProjectProfileManager">
<profile version="1.0">
<option name="myName" value="Project Default" />
<inspection_tool class="PyPackageRequirementsInspection" enabled="false" level="WARNING" enabled_by_default="false">
<option name="ignoredPackages">
<value>
<list size="5">
<item index="0" class="java.lang.String" itemvalue="jupyter-core" />
<item index="1" class="java.lang.String" itemvalue="wandb" />
<item index="2" class="java.lang.String" itemvalue="pytorch-lightning" />
<item index="3" class="java.lang.String" itemvalue="torch" />
<item index="4" class="java.lang.String" itemvalue="torchvision" />
</list>
</value>
</option>
</inspection_tool>
<inspection_tool class="PyPep8Inspection" enabled="true" level="WEAK WARNING" enabled_by_default="true">
<option name="ignoredErrors">
<list>
<option value="E722" />
<option value="E266" />
<option value="W605" />
</list>
</option>
</inspection_tool>
<inspection_tool class="PyPep8NamingInspection" enabled="true" level="WEAK WARNING" enabled_by_default="true">
<option name="ignoredErrors">
<list>
<option value="N812" />
<option value="N803" />
<option value="N806" />
<option value="N802" />
</list>
</option>
</inspection_tool>
<inspection_tool class="PyUnresolvedReferencesInspection" enabled="true" level="WARNING" enabled_by_default="true">
<option name="ignoredIdentifiers">
<list>
<option value="omegaconf.base.Container.*" />
<option value="pytorch_lightning.core.datamodule.LightningDataModule.train_dataset" />
<option value="torch.optim.lr_scheduler._LRScheduler" />
</list>
</option>
</inspection_tool>
</profile>
</component>

View File

@ -0,0 +1,6 @@
<component name="InspectionProjectProfileManager">
<settings>
<option name="USE_PROJECT_PROFILE" value="false" />
<version value="1.0" />
</settings>
</component>

4
.idea/misc.xml generated Normal file
View File

@ -0,0 +1,4 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.10 (Viz)" project-jdk-type="Python SDK" />
</project>

8
.idea/modules.xml generated Normal file
View File

@ -0,0 +1,8 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ProjectModuleManager">
<modules>
<module fileurl="file://$PROJECT_DIR$/.idea/ManimML.iml" filepath="$PROJECT_DIR$/.idea/ManimML.iml" />
</modules>
</component>
</project>

0
.idea/sonarlint/issuestore/index.pb generated Normal file
View File

6
.idea/vcs.xml generated Normal file
View File

@ -0,0 +1,6 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="VcsDirectoryMappings">
<mapping directory="$PROJECT_DIR$" vcs="Git" />
</component>
</project>

View File

@ -1,19 +1,23 @@
from pathlib import Path
from manim import * from manim import *
from PIL import Image from PIL import Image
from manim_ml.neural_network.layers.convolutional import ConvolutionalLayer from manim_ml.neural_network.layers import Convolutional3DLayer
from manim_ml.neural_network.layers.feed_forward import FeedForwardLayer from manim_ml.neural_network.layers.feed_forward import FeedForwardLayer
from manim_ml.neural_network.layers.image import ImageLayer from manim_ml.neural_network.layers.image import ImageLayer
from manim_ml.neural_network.neural_network import NeuralNetwork from manim_ml.neural_network.neural_network import NeuralNetwork
ROOT_DIR = Path(__file__).parents[2]
def make_code_snippet(): def make_code_snippet():
code_str = """ code_str = """
# Make nn # Make nn
nn = NeuralNetwork([ nn = NeuralNetwork([
ImageLayer(numpy_image), ImageLayer(numpy_image),
ConvolutionalLayer(3, 3, 3), Convolutional3DLayer(3, 3, 3),
ConvolutionalLayer(5, 2, 2), Convolutional3DLayer(5, 2, 2),
ConvolutionalLayer(10, 2, 1), Convolutional3DLayer(10, 2, 1),
FeedForwardLayer(3), FeedForwardLayer(3),
FeedForwardLayer(1) FeedForwardLayer(1)
], layer_spacing=0.2) ], layer_spacing=0.2)
@ -46,14 +50,14 @@ config.frame_width = 12.0
class CombinedScene(ThreeDScene, Scene): class CombinedScene(ThreeDScene, Scene):
def construct(self): def construct(self):
image = Image.open('../../assets/mnist/digit.jpeg') image = Image.open(ROOT_DIR / 'assets/mnist/digit.jpeg')
numpy_image = np.asarray(image) numpy_image = np.asarray(image)
# Make nn # Make nn
nn = NeuralNetwork([ nn = NeuralNetwork([
ImageLayer(numpy_image, height=3.5), ImageLayer(numpy_image, height=3.5),
ConvolutionalLayer(3, 3, 3, filter_spacing=0.2), Convolutional3DLayer(3, 3, 3, filter_spacing=0.2),
ConvolutionalLayer(5, 2, 2, filter_spacing=0.2), Convolutional3DLayer(5, 2, 2, filter_spacing=0.2),
ConvolutionalLayer(10, 2, 1, filter_spacing=0.2), Convolutional3DLayer(10, 2, 1, filter_spacing=0.2),
FeedForwardLayer(3, rectangle_stroke_width=4, node_stroke_width=4).scale(2), FeedForwardLayer(3, rectangle_stroke_width=4, node_stroke_width=4).scale(2),
FeedForwardLayer(1, rectangle_stroke_width=4, node_stroke_width=4).scale(2) FeedForwardLayer(1, rectangle_stroke_width=4, node_stroke_width=4).scale(2)
], layer_spacing=0.2) ], layer_spacing=0.2)

View File

@ -1,38 +1,42 @@
"""This module is dedicated to visualizing VAE disentanglement""" """This module is dedicated to visualizing VAE disentanglement"""
import sys from pathlib import Path
import os
sys.path.append(os.environ["PROJECT_ROOT"])
from manim import * from manim import *
from manim_ml.neural_network import NeuralNetwork
import manim_ml.util as util from manim_ml.neural_network.layers import FeedForwardLayer
from manim_ml.neural_network.neural_network import NeuralNetwork
import pickle import pickle
class VAEDecoder(VGroup): ROOT_DIR = Path(__file__).parents[2]
"""Just shows the VAE encoder"""
def __init__(self):
super(VGroup, self).__init__()
# Setup the Neural Network
node_counts = [3, 5]
self.neural_network = NeuralNetwork(node_counts, layer_spacing=0.55)
self.add(self.neural_network)
def make_encoding_animation(self): def construct_image_mobject(input_image, height=2.3):
pass """Constructs an ImageMobject from a numpy grayscale image"""
# Convert image to rgb
if len(input_image.shape) == 2:
input_image = np.repeat(input_image, 3, axis=0)
input_image = np.rollaxis(input_image, 0, start=3)
# Make the ImageMobject
image_mobject = ImageMobject(input_image, image_mode="RGB")
image_mobject.set_resampling_algorithm(RESAMPLING_ALGORITHMS["nearest"])
image_mobject.height = height
return image_mobject
class DisentanglementVisualization(VGroup): class DisentanglementVisualization(VGroup):
def __init__(self, model_path=os.path.join(os.environ["PROJECT_ROOT"], "examples/variational_autoencoder/autoencoder_models/saved_models/model_dim2.pth"), image_height=0.35): def __init__(self, model_path=ROOT_DIR / "examples/variational_autoencoder/autoencoder_models/saved_models/model_dim2.pth", image_height=0.35):
self.model_path = model_path self.model_path = model_path
self.image_height = image_height self.image_height = image_height
# Load disentanglement image objects # Load disentanglement image objects
with open(os.path.join(os.environ["PROJECT_ROOT"], "examples/variational_autoencoder/autoencoder_models/disentanglement.pkl"), "rb") as f: with open(ROOT_DIR/ "examples/variational_autoencoder/autoencoder_models/disentanglement.pkl", "rb") as f:
self.image_handler = pickle.load(f) self.image_handler = pickle.load(f)
def make_disentanglement_generation_animation(self): def make_disentanglement_generation_animation(self):
animation_list = [] animation_list = []
for image_index, image in enumerate(self.image_handler["images"]): for image_index, image in enumerate(self.image_handler["images"]):
image_mobject = util.construct_image_mobject(image, height=self.image_height) image_mobject = construct_image_mobject(image, height=self.image_height)
r, c = self.image_handler["bin_indices"][image_index] r, c = self.image_handler["bin_indices"][image_index]
# Move the image to the correct location # Move the image to the correct location
r_offset = -1.2 r_offset = -1.2
@ -80,7 +84,11 @@ class DisentanglementScene(Scene):
def construct(self): def construct(self):
# Make the VAE decoder # Make the VAE decoder
vae_decoder = VAEDecoder() vae_decoder = NeuralNetwork([
FeedForwardLayer(3),
FeedForwardLayer(5),
], layer_spacing=0.55)
vae_decoder.shift([-0.55, 0, 0]) vae_decoder.shift([-0.55, 0, 0])
self.play(Create(vae_decoder), run_time=1) self.play(Create(vae_decoder), run_time=1)
# Make the embedding # Make the embedding

View File

@ -1,4 +1,6 @@
import random import random
from pathlib import Path
from PIL import Image from PIL import Image
from manim import * from manim import *
from manim_ml.neural_network.layers.embedding import EmbeddingLayer from manim_ml.neural_network.layers.embedding import EmbeddingLayer
@ -8,6 +10,8 @@ from manim_ml.neural_network.layers.vector import VectorLayer
from manim_ml.neural_network.neural_network import NeuralNetwork from manim_ml.neural_network.neural_network import NeuralNetwork
ROOT_DIR = Path(__file__).parents[2]
config.pixel_height = 1080 config.pixel_height = 1080
config.pixel_width = 1080 config.pixel_width = 1080
config.frame_height = 8.3 config.frame_height = 8.3
@ -25,7 +29,7 @@ class GAN(Mobject):
def make_entities(self, image_height=1.2): def make_entities(self, image_height=1.2):
"""Makes all of the network entities""" """Makes all of the network entities"""
# Make the fake image layer # Make the fake image layer
default_image = Image.open('../../assets/gan/fake_image.png') default_image = Image.open(ROOT_DIR / 'assets/gan/fake_image.png')
numpy_image = np.asarray(default_image) numpy_image = np.asarray(default_image)
self.fake_image_layer = ImageLayer(numpy_image, height=image_height, show_image_on_create=False) self.fake_image_layer = ImageLayer(numpy_image, height=image_height, show_image_on_create=False)
# Make the Generator Network # Make the Generator Network
@ -45,7 +49,7 @@ class GAN(Mobject):
], layer_spacing=0.1) ], layer_spacing=0.1)
self.add(self.discriminator) self.add(self.discriminator)
# Make Ground Truth Dataset # Make Ground Truth Dataset
default_image = Image.open('../../assets/gan/real_image.jpg') default_image = Image.open(ROOT_DIR / 'assets/gan/real_image.jpg')
numpy_image = np.asarray(default_image) numpy_image = np.asarray(default_image)
self.ground_truth_layer = ImageLayer(numpy_image, height=image_height) self.ground_truth_layer = ImageLayer(numpy_image, height=image_height)
self.add(self.ground_truth_layer) self.add(self.ground_truth_layer)

View File

@ -1,13 +1,17 @@
"""Visualization of VAE Interpolation""" """Visualization of VAE Interpolation"""
import sys from pathlib import Path
import os
sys.path.append(os.environ["PROJECT_ROOT"])
from manim import * from manim import *
import pickle
import numpy as np import numpy as np
import manim_ml.neural_network as neural_network from PIL import Image
import examples.variational_autoencoder.variational_autoencoder as variational_autoencoder from manim_ml.neural_network.layers import EmbeddingLayer
from manim_ml.neural_network.layers import FeedForwardLayer
from manim_ml.neural_network.layers import ImageLayer
from manim_ml.neural_network.neural_network import NeuralNetwork
ROOT_DIR = Path(__file__).parents[2]
""" """
The VAE Scene for the twitter video. The VAE Scene for the twitter video.
@ -24,7 +28,17 @@ class InterpolationScene(MovingCameraScene):
def construct(self): def construct(self):
# Set Scene config # Set Scene config
vae = variational_autoencoder.VariationalAutoencoder(dot_radius=0.035, layer_spacing=0.5) numpy_image = np.asarray(Image.open(ROOT_DIR / 'assets/mnist/digit.jpeg'))
vae = NeuralNetwork([
ImageLayer(numpy_image, height=1.4),
FeedForwardLayer(5),
FeedForwardLayer(3),
EmbeddingLayer(dist_theme="ellipse").scale(2),
FeedForwardLayer(3),
FeedForwardLayer(5),
ImageLayer(numpy_image, height=1.4),
])
vae.move_to(ORIGIN) vae.move_to(ORIGIN)
vae.encoder.shift(LEFT*0.5) vae.encoder.shift(LEFT*0.5)
vae.decoder.shift(RIGHT*0.5) vae.decoder.shift(RIGHT*0.5)

View File

@ -1,6 +1,8 @@
""" """
Here is a animated explanatory figure for the "Oracle Guided Image Synthesis with Relative Queries" paper. Here is a animated explanatory figure for the "Oracle Guided Image Synthesis with Relative Queries" paper.
""" """
from pathlib import Path
from manim import * from manim import *
from manim_ml.neural_network.layers import triplet from manim_ml.neural_network.layers import triplet
from manim_ml.neural_network.layers.image import ImageLayer from manim_ml.neural_network.layers.image import ImageLayer
@ -19,6 +21,8 @@ config.pixel_width = 1900
config.frame_height = 6.0 config.frame_height = 6.0
config.frame_width = 6.0 config.frame_width = 6.0
ROOT_DIR = Path(__file__).parents[3]
class Localizer(): class Localizer():
""" """
Holds the localizer object, which contains the queries, images, etc. Holds the localizer object, which contains the queries, images, etc.
@ -30,8 +34,8 @@ class Localizer():
self.index = -1 self.index = -1
self.axes = axes self.axes = axes
self.num_queries = 3 self.num_queries = 3
self.assets_path = "../../../assets/oracle_guidance" self.assets_path = ROOT_DIR / "assets/oracle_guidance"
self.ground_truth_image_path = os.path.join(self.assets_path, "ground_truth.jpg") self.ground_truth_image_path = self.assets_path / "ground_truth.jpg"
self.ground_truth_location = np.array([2, 3]) self.ground_truth_location = np.array([2, 3])
# Prior distribution # Prior distribution
print("initial gaussian") print("initial gaussian")
@ -119,7 +123,7 @@ class OracleGuidanceVisualization(Scene):
self.title = None self.title = None
# Set image paths # Set image paths
# VAE embedding animation image paths # VAE embedding animation image paths
self.assets_path = "../../../assets/oracle_guidance" self.assets_path = ROOT_DIR / "assets/oracle_guidance"
self.input_embed_image_path = os.path.join(self.assets_path, "input_image.jpg") self.input_embed_image_path = os.path.join(self.assets_path, "input_image.jpg")
self.output_embed_image_path = os.path.join(self.assets_path, "output_image.jpg") self.output_embed_image_path = os.path.join(self.assets_path, "output_image.jpg")

View File

@ -4,323 +4,36 @@ In this module I define Manim visualizations for Variational Autoencoders
and Traditional Autoencoders. and Traditional Autoencoders.
""" """
from pathlib import Path
from manim import * from manim import *
import pickle
import numpy as np import numpy as np
import os
from PIL import Image from PIL import Image
import manim_ml.neural_network as neural_network from manim_ml.neural_network.layers import EmbeddingLayer
from manim_ml.neural_network.embedding import EmbeddingLayer from manim_ml.neural_network.layers import FeedForwardLayer
from manim_ml.neural_network.feed_forward import FeedForwardLayer from manim_ml.neural_network.layers import ImageLayer
from manim_ml.neural_network.image import ImageLayer
from manim_ml.neural_network.neural_network import NeuralNetwork from manim_ml.neural_network.neural_network import NeuralNetwork
class VariationalAutoencoder(VGroup): ROOT_DIR = Path(__file__).parents[2]
"""Variational Autoencoder Manim Visualization"""
def __init__(
self, encoder_nodes_per_layer=[5, 3], decoder_nodes_per_layer=[3, 5], point_color=BLUE,
dot_radius=0.05, ellipse_stroke_width=2.0, layer_spacing=0.5
):
super(VGroup, self).__init__()
self.encoder_nodes_per_layer = encoder_nodes_per_layer
self.decoder_nodes_per_layer = decoder_nodes_per_layer
self.point_color = point_color
self.dot_radius = dot_radius
self.layer_spacing = layer_spacing
self.ellipse_stroke_width = ellipse_stroke_width
# Make the VMobjects
self.encoder, self.decoder = self._construct_encoder_and_decoder()
self.embedding = self._construct_embedding()
# Setup the relative locations
self.embedding.move_to(self.encoder)
self.embedding.shift([1.4 * self.encoder.width, 0, 0])
self.decoder.move_to(self.embedding)
self.decoder.shift([self.decoder.width * 1.4, 0, 0])
# Add the objects to the VAE object
self.add(self.encoder)
self.add(self.decoder)
self.add(self.embedding)
def _construct_encoder_and_decoder(self):
"""Makes the VAE encoder and decoder"""
# Make the encoder
layer_node_count = self.encoder_nodes_per_layer
encoder = neural_network.NeuralNetwork(layer_node_count, dot_radius=self.dot_radius, layer_spacing=self.layer_spacing)
encoder.scale(1.2)
# Make the decoder
layer_node_count = self.decoder_nodes_per_layer
decoder = neural_network.NeuralNetwork(layer_node_count, dot_radius=self.dot_radius, layer_spacing=self.layer_spacing)
decoder.scale(1.2)
return encoder, decoder
def _construct_embedding(self):
"""Makes a Gaussian-like embedding"""
embedding = VGroup()
# Sample points from a Gaussian
num_points = 200
standard_deviation = [0.9, 0.9]
mean = [0, 0]
points = np.random.normal(mean, standard_deviation, size=(num_points, 2))
# Make an axes
embedding.axes = Axes(
x_range=[-3, 3],
y_range=[-3, 3],
x_length=2.2,
y_length=2.2,
tips=False,
)
# Add each point to the axes
self.point_dots = VGroup()
for point in points:
point_location = embedding.axes.coords_to_point(*point)
dot = Dot(point_location, color=self.point_color, radius=self.dot_radius/2)
self.point_dots.add(dot)
embedding.add(self.point_dots)
return embedding
def _construct_image_mobject(self, input_image, height=2.3):
"""Constructs an ImageMobject from a numpy grayscale image"""
# Convert image to rgb
input_image = np.repeat(input_image, 3, axis=0)
input_image = np.rollaxis(input_image, 0, start=3)
# Make the ImageMobject
image_mobject = ImageMobject(input_image, image_mode="RGB")
image_mobject.set_resampling_algorithm(RESAMPLING_ALGORITHMS["nearest"])
image_mobject.height = height
return image_mobject
def _construct_input_output_images(self, image_pair):
"""Places the input and output images for the AE"""
# Takes the image pair
# image_pair is assumed to be [2, x, y]
input_image = image_pair[0][None, :, :]
recon_image = image_pair[1][None, :, :]
# Make the image mobjects
input_image_object = self._construct_image_mobject(input_image)
recon_image_object = self._construct_image_mobject(recon_image)
return input_image_object, recon_image_object
def make_dot_convergence_animation(self, location, run_time=1.5):
"""Makes dots converge on a specific location"""
# Move to location
animations = []
for dot in self.encoder.dots:
coords = self.embedding.axes.coords_to_point(*location)
animations.append(dot.animate.move_to(coords))
move_animations = AnimationGroup(*animations, run_time=1.5)
# Follow up with remove animations
remove_animations = []
for dot in self.encoder.dots:
remove_animations.append(FadeOut(dot))
remove_animations = AnimationGroup(*remove_animations, run_time=0.2)
animation_group = Succession(move_animations, remove_animations, lag_ratio=1.0)
return animation_group
def make_dot_divergence_animation(self, location, run_time=3.0):
"""Makes dots diverge from the given location and move the decoder"""
animations = []
for node in self.decoder.layers[0].node_group:
new_dot = Dot(location, radius=self.dot_radius, color=RED)
per_node_succession = Succession(
Create(new_dot),
new_dot.animate.move_to(node.get_center()),
)
animations.append(per_node_succession)
animation_group = AnimationGroup(*animations)
return animation_group
def make_reset_vae_animation(self):
"""Resets the VAE to just the neural network"""
animation_group = AnimationGroup(
FadeOut(self.input_image),
FadeOut(self.output_image),
FadeOut(self.distribution_objects),
run_time=1.0
)
return animation_group
def make_forward_pass_animation(self, image_pair, run_time=1.5):
"""Overriden forward pass animation specific to a VAE"""
per_unit_runtime = run_time
# Setup images
self.input_image, self.output_image = self._construct_input_output_images(image_pair)
self.input_image.move_to(self.encoder.get_left())
self.input_image.shift(LEFT)
self.output_image.move_to(self.decoder.get_right())
self.output_image.shift(RIGHT*1.3)
# Make encoder forward pass
encoder_forward_pass = self.encoder.make_forward_propagation_animation(run_time=per_unit_runtime)
# Make red dot in embedding
mean = [1.0, 1.5]
mean_point = self.embedding.axes.coords_to_point(*mean)
std = [0.8, 1.2]
# Make the dot convergence animation
dot_convergence_animation = self.make_dot_convergence_animation(mean, run_time=per_unit_runtime)
encoding_succesion = Succession(
encoder_forward_pass,
dot_convergence_animation
)
# Make an ellipse centered at mean_point witAnimationGraph std outline
center_dot = Dot(mean_point, radius=self.dot_radius, color=RED)
ellipse = Ellipse(width=std[0], height=std[1], color=RED, fill_opacity=0.3, stroke_width=self.ellipse_stroke_width)
ellipse.move_to(mean_point)
self.distribution_objects = VGroup(
center_dot,
ellipse
)
# Make ellipse animation
ellipse_animation = AnimationGroup(
GrowFromCenter(center_dot),
GrowFromCenter(ellipse),
)
# Make the dot divergence animation
sampled_point = [0.51, 1.0]
divergence_point = self.embedding.axes.coords_to_point(*sampled_point)
dot_divergence_animation = self.make_dot_divergence_animation(divergence_point, run_time=per_unit_runtime)
# Make decoder foward pass
decoder_forward_pass = self.decoder.make_forward_propagation_animation(run_time=per_unit_runtime)
# Add the animations to the group
animation_group = AnimationGroup(
FadeIn(self.input_image),
encoding_succesion,
ellipse_animation,
dot_divergence_animation,
decoder_forward_pass,
FadeIn(self.output_image),
lag_ratio=1,
)
return animation_group
def make_interpolation_animation(self, interpolation_images, frame_rate=5):
"""Makes an animation interpolation"""
num_images = len(interpolation_images)
# Make madeup path
interpolation_latent_path = np.linspace([-0.7, -1.2], [1.2, 1.5], num=num_images)
# Make the path animation
first_dot_location = self.embedding.axes.coords_to_point(*interpolation_latent_path[0])
last_dot_location = self.embedding.axes.coords_to_point(*interpolation_latent_path[-1])
moving_dot = Dot(first_dot_location, radius=self.dot_radius, color=RED)
self.add(moving_dot)
animation_list = [Create(Line(first_dot_location, last_dot_location, color=RED), run_time=0.1*num_images)]
for image_index in range(num_images - 1):
next_index = image_index + 1
# Get path
next_point = interpolation_latent_path[next_index]
next_position = self.embedding.axes.coords_to_point(*next_point)
# Draw path from current point to next point
move_animation = moving_dot.animate(run_time=0.1*num_images).move_to(next_position)
animation_list.append(move_animation)
interpolation_animation = AnimationGroup(*animation_list)
# Make the images animation
animation_list = [Wait(0.5)]
for numpy_image in interpolation_images:
numpy_image = numpy_image[None, :, :]
manim_image = self._construct_image_mobject(numpy_image)
# Move the image to the correct location
manim_image.move_to(self.output_image)
# Add the image
animation_list.append(FadeIn(manim_image, run_time=0.1))
# Wait
# animation_list.append(Wait(1 / frame_rate))
# Remove the image
# animation_list.append(FadeOut(manim_image, run_time=0.1))
images_animation = AnimationGroup(*animation_list, lag_ratio=1.0)
# Combine the two into an AnimationGroup
animation_group = AnimationGroup(
interpolation_animation,
images_animation
)
return animation_group
class VariationalAutoencoder(VGroup):
def __init__(self):
embedding_layer = EmbeddingLayer()
image = Image.open('images/image.jpeg')
numpy_image = np.asarray(image)
# Make nn
neural_network = NeuralNetwork([
ImageLayer(numpy_image, height=1.4),
FeedForwardLayer(5),
FeedForwardLayer(3),
embedding_layer,
FeedForwardLayer(3),
FeedForwardLayer(5),
ImageLayer(numpy_image, height=1.4),
])
neural_network.scale(1.3)
self.play(Create(neural_network))
self.play(neural_network.make_forward_pass_animation(run_time=15))
class MNISTImageHandler():
"""Deals with loading serialized VAE mnist images from "autoencoder_models" """
def __init__(
self,
image_pairs_file_path=os.path.join(os.environ["PROJECT_ROOT"], "examples/variational_autoencoder/autoencoder_models/image_pairs.pkl"),
interpolations_file_path=os.path.join(os.environ["PROJECT_ROOT"], "examples/variational_autoencoder/autoencoder_models/interpolations.pkl")
):
self.image_pairs_file_path = image_pairs_file_path
self.interpolations_file_path = interpolations_file_path
self.image_pairs = []
self.interpolation_images = []
self.interpolation_latent_path = []
self.load_serialized_data()
def load_serialized_data(self):
with open(self.image_pairs_file_path, "rb") as f:
self.image_pairs = pickle.load(f)
with open(self.interpolations_file_path, "rb") as f:
self.interpolation_dict = pickle.load(f)
self.interpolation_images = self.interpolation_dict["interpolation_images"]
self.interpolation_latent_path = self.interpolation_dict["interpolation_path"]
"""
The VAE Scene for the twitter video.
"""
config.pixel_height = 720
config.pixel_width = 1280
config.frame_height = 5.0
config.frame_width = 5.0
# Set random seed so point distribution is constant
np.random.seed(1)
class VAEScene(Scene): class VAEScene(Scene):
"""Scene object for a Variational Autoencoder and Autoencoder""" """Scene object for a Variational Autoencoder and Autoencoder"""
def construct(self): def construct(self):
# Set Scene config
vae = VariationalAutoencoder() numpy_image = np.asarray(Image.open(ROOT_DIR / 'assets/mnist/digit.jpeg'))
mnist_image_handler = MNISTImageHandler() vae = NeuralNetwork([
image_pair = mnist_image_handler.image_pairs[3] ImageLayer(numpy_image, height=1.4),
vae.move_to(ORIGIN) FeedForwardLayer(5),
FeedForwardLayer(3),
EmbeddingLayer(dist_theme="ellipse").scale(2),
FeedForwardLayer(3),
FeedForwardLayer(5),
ImageLayer(numpy_image, height=1.4),
])
vae.scale(1.3) vae.scale(1.3)
self.play(Create(vae), run_time=3)
# Make a forward pass animation self.play(Create(vae))
forward_pass_animation = vae.make_forward_pass_animation(image_pair) self.play(vae.make_forward_pass_animation(run_time=15))
self.play(forward_pass_animation)
# Remove the input and output images
reset_animation = vae.make_reset_vae_animation()
self.play(reset_animation)
# Interpolation animation
interpolation_images = mnist_image_handler.interpolation_images
interpolation_animation = vae.make_interpolation_animation(interpolation_images)
self.play(interpolation_animation)