lavc: Add unit test for APV entropy decode

This commit is contained in:
Mark Thompson
2025-05-05 21:10:39 +01:00
parent a3c8fba5da
commit 1ad57a847e
3 changed files with 455 additions and 0 deletions

View File

@ -1329,6 +1329,7 @@ TESTPROGS = avcodec \
jpeg2000dwt \
mathops \
TESTPROGS-$(CONFIG_APV_DECODER) += apv
TESTPROGS-$(CONFIG_AV1_VAAPI_ENCODER) += av1_levels
TESTPROGS-$(CONFIG_CABAC) += cabac
TESTPROGS-$(CONFIG_GOLOMB) += golomb

449
libavcodec/tests/apv.c Normal file
View File

@ -0,0 +1,449 @@
/*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/lfg.h"
#include "libavutil/random_seed.h"
#include "libavcodec/apv_decode.h"
#include "libavcodec/apv_dsp.h"
#include "libavcodec/put_bits.h"
// Whole file included here to get internal symbols.
#include "libavcodec/apv_entropy.c"
// As defined in 7.1.4, for testing.
// Adds a check to limit loop after reading 16 zero bits to avoid
// getting stuck reading a stream of zeroes forever (this matches
// the behaviour of the faster version).
static unsigned int apv_read_vlc_spec(GetBitContext *gbc, int k_param)
{
unsigned int symbol_value = 0;
int parse_exp_golomb = 1;
int k = k_param;
int stop_loop = 0;
if(get_bits1(gbc) == 1) {
parse_exp_golomb = 0;
} else {
if (get_bits1(gbc) == 0) {
symbol_value += (1 << k);
parse_exp_golomb = 0;
} else {
symbol_value += (2 << k);
parse_exp_golomb = 1;
}
}
if (parse_exp_golomb) {
int read_limit = 0;
do {
if (get_bits1(gbc) == 1) {
stop_loop = 1;
} else {
if (++read_limit == 16)
break;
symbol_value += (1 << k);
k++;
}
} while (!stop_loop);
}
if (k > 0)
symbol_value += get_bits(gbc, k);
return symbol_value;
}
// As defined in 7.2.4, for testing.
static void apv_write_vlc_spec(PutBitContext *pbc,
unsigned int symbol_val, int k_param)
{
int prefix_vlc_table[3][2] = {{1, 0}, {0, 0}, {0, 1}};
unsigned int symbol_value = symbol_val;
int val_prefix_vlc = av_clip(symbol_val >> k_param, 0, 2);
int bit_count = 0;
int k = k_param;
while (symbol_value >= (1 << k)) {
symbol_value -= (1 << k);
if (bit_count < 2)
put_bits(pbc, 1, prefix_vlc_table[val_prefix_vlc][bit_count]);
else
put_bits(pbc, 1, 0);
if (bit_count >= 2)
++k;
++bit_count;
}
if(bit_count < 2)
put_bits(pbc, 1, prefix_vlc_table[val_prefix_vlc][bit_count]);
else
put_bits(pbc, 1, 1);
if(k > 0)
put_bits(pbc, k, symbol_value);
}
// Old version of ff_apv_entropy_decode_block, for test comparison.
static int apv_entropy_decode_block(int16_t *restrict coeff,
GetBitContext *restrict gbc,
APVEntropyState *restrict state)
{
const APVVLCLUT *lut = state->decode_lut;
// DC coefficient.
{
int abs_dc_coeff_diff;
int sign_dc_coeff_diff;
int dc_coeff;
abs_dc_coeff_diff = apv_read_vlc(gbc, state->prev_k_dc, lut);
if (abs_dc_coeff_diff > 0)
sign_dc_coeff_diff = get_bits1(gbc);
else
sign_dc_coeff_diff = 0;
if (sign_dc_coeff_diff)
dc_coeff = state->prev_dc - abs_dc_coeff_diff;
else
dc_coeff = state->prev_dc + abs_dc_coeff_diff;
if (dc_coeff < APV_MIN_TRANS_COEFF ||
dc_coeff > APV_MAX_TRANS_COEFF) {
av_log(state->log_ctx, AV_LOG_ERROR,
"Out-of-range DC coefficient value: %d "
"(from prev_dc %d abs_dc_coeff_diff %d sign_dc_coeff_diff %d)\n",
dc_coeff, state->prev_dc, abs_dc_coeff_diff, sign_dc_coeff_diff);
return AVERROR_INVALIDDATA;
}
coeff[0] = dc_coeff;
state->prev_dc = dc_coeff;
state->prev_k_dc = FFMIN(abs_dc_coeff_diff >> 1, 5);
}
// AC coefficients.
{
int scan_pos = 1;
int first_ac = 1;
int k_run = 0;
int k_level = state->prev_k_level;
do {
int coeff_zero_run;
coeff_zero_run = apv_read_vlc(gbc, k_run, lut);
if (coeff_zero_run > APV_BLK_COEFFS - scan_pos) {
av_log(state->log_ctx, AV_LOG_ERROR,
"Out-of-range zero-run value: %d (at scan pos %d)\n",
coeff_zero_run, scan_pos);
return AVERROR_INVALIDDATA;
}
for (int i = 0; i < coeff_zero_run; i++) {
coeff[ff_zigzag_direct[scan_pos]] = 0;
++scan_pos;
}
k_run = FFMIN(coeff_zero_run >> 2, 2);
if (scan_pos < APV_BLK_COEFFS) {
int abs_ac_coeff_minus1;
int sign_ac_coeff;
int abs_level, level;
abs_ac_coeff_minus1 = apv_read_vlc(gbc, k_level, lut);
sign_ac_coeff = get_bits(gbc, 1);
abs_level = abs_ac_coeff_minus1 + 1;
if (sign_ac_coeff)
level = -abs_level;
else
level = abs_level;
if (level < APV_MIN_TRANS_COEFF ||
level > APV_MAX_TRANS_COEFF) {
av_log(state->log_ctx, AV_LOG_ERROR,
"Out-of-range AC coefficient value: %d "
"(from k_param %d abs_ac_coeff_minus1 %d sign_ac_coeff %d)\n",
level, k_level, abs_ac_coeff_minus1, sign_ac_coeff);
}
coeff[ff_zigzag_direct[scan_pos]] = level;
k_level = FFMIN(abs_level >> 2, 4);
if (first_ac) {
state->prev_k_level = k_level;
first_ac = 0;
}
++scan_pos;
}
} while (scan_pos < APV_BLK_COEFFS);
}
return 0;
}
static void binary(char *buf, uint32_t value, int bits)
{
for (int i = 0; i < bits; i++)
buf[i] = (value >> (bits - i - 1) & 1) ? '1' : '0';
buf[bits] = '\0';
}
static int test_apv_read_vlc(void)
{
APVVLCLUT lut;
int err = 0;
ff_apv_entropy_build_decode_lut(&lut);
// Generate all possible 20 bit sequences (padded with zeroes), then
// verify that spec and improved parsing functions get the same result
// and consume the same number of bits for each possible k_param.
for (int k = 0; k <= 5; k++) {
for (uint32_t b = 0; b < (1 << 20); b++) {
uint8_t buf[8] = {
b >> 12,
b >> 4,
b << 4,
0, 0, 0, 0, 0
};
GetBitContext gbc_test, gbc_spec;
unsigned int res_test, res_spec;
int con_test, con_spec;
init_get_bits8(&gbc_test, buf, 8);
init_get_bits8(&gbc_spec, buf, 8);
res_test = apv_read_vlc (&gbc_test, k, &lut);
res_spec = apv_read_vlc_spec(&gbc_spec, k);
con_test = get_bits_count(&gbc_test);
con_spec = get_bits_count(&gbc_spec);
if (res_test != res_spec ||
con_test != con_spec) {
char str[21];
binary(str, b, 20);
av_log(NULL, AV_LOG_ERROR,
"Mismatch reading %s (%d) with k=%d:\n", str, b, k);
av_log(NULL, AV_LOG_ERROR,
"Test function result %d consumed %d bits.\n",
res_test, con_test);
av_log(NULL, AV_LOG_ERROR,
"Spec function result %d consumed %d bits.\n",
res_spec, con_spec);
++err;
if (err > 10)
return err;
}
}
}
return err;
}
static int random_coeff(AVLFG *lfg)
{
// Geometric distribution of code lengths (1-14 bits),
// uniform distribution within codes of the length,
// equal probability of either sign.
int length = (av_lfg_get(lfg) / (UINT_MAX / 14 + 1));
int random = av_lfg_get(lfg);
int value = (1 << length) + (random & (1 << length) - 1);
if (random & (1 << length))
return value;
else
return -value;
}
static int random_run(AVLFG *lfg)
{
// Expoenential distrbution of run lengths.
unsigned int random = av_lfg_get(lfg);
for (int len = 0;; len++) {
if (random & (1 << len))
return len;
}
// You rolled zero on a 2^32 sided die; well done!
return 64;
}
static int test_apv_entropy_decode_block(void)
{
// Generate random entropy blocks, code them, then ensure they
// decode to the same block with both implementations.
APVVLCLUT decode_lut;
AVLFG lfg;
unsigned int seed = av_get_random_seed();
av_lfg_init(&lfg, seed);
av_log(NULL, AV_LOG_INFO, "seed = %u\n", seed);
ff_apv_entropy_build_decode_lut(&decode_lut);
for (int t = 0; t < 100; t++) {
APVEntropyState state, save_state;
int16_t block[64];
int16_t block_test1[64];
int16_t block_test2[64];
uint8_t buffer[1024];
PutBitContext pbc;
GetBitContext gbc;
int bits_written;
int pos, run, coeff, level, err;
int k_dc, k_run, k_level;
memset(block, 0, sizeof(block));
memset(buffer, 0, sizeof(buffer));
init_put_bits(&pbc, buffer, sizeof(buffer));
// Randomly-constructed state.
memset(&state, 0, sizeof(state));
state.decode_lut = &decode_lut;
state.prev_dc = random_coeff(&lfg);
state.prev_k_dc = av_lfg_get(&lfg) % 5;
state.prev_k_level = av_lfg_get(&lfg) % 4;
save_state = state;
k_dc = state.prev_k_dc;
k_run = 0;
k_level = state.prev_k_level;
coeff = random_coeff(&lfg) / 2;
block[ff_zigzag_direct[0]] = state.prev_dc + coeff;
apv_write_vlc_spec(&pbc, FFABS(coeff), k_dc);
if (coeff != 0)
put_bits(&pbc, 1, coeff < 0);
pos = 1;
while (pos < 64) {
run = random_run(&lfg);
if (pos + run > 64)
run = 64 - pos;
apv_write_vlc_spec(&pbc, run, k_run);
k_run = av_clip(run >> 2, 0, 2);
pos += run;
if (pos < 64) {
coeff = random_coeff(&lfg);
level = FFABS(coeff) - 1;
block[ff_zigzag_direct[pos]] = coeff;
apv_write_vlc_spec(&pbc, level, k_level);
put_bits(&pbc, 1, coeff < 0);
k_level = av_clip((level + 1) >> 2, 0, 4);
++pos;
}
}
bits_written = put_bits_count(&pbc);
flush_put_bits(&pbc);
// Fill output block with a distinctive error value.
for (int i = 0; i < 64; i++)
block_test1[i] = -9999;
init_get_bits8(&gbc, buffer, sizeof(buffer));
err = apv_entropy_decode_block(block_test1, &gbc, &state);
if (err < 0) {
av_log(NULL, AV_LOG_ERROR, "Entropy decode returned error.\n");
return 1;
} else {
int bits_read = get_bits_count(&gbc);
if (bits_written != bits_read) {
av_log(NULL, AV_LOG_ERROR, "Wrote %d bits but read %d.\n",
bits_written, bits_read);
return 1;
} else {
err = 0;
for (int i = 0; i < 64; i++) {
if (block[i] != block_test1[i])
++err;
}
if (err > 0) {
av_log(NULL, AV_LOG_ERROR, "%d mismatches in output block.\n", err);
return err;
}
}
}
init_get_bits8(&gbc, buffer, sizeof(buffer));
memset(block_test2, 0, 64 * sizeof(int16_t));
err = ff_apv_entropy_decode_block(block_test2, &gbc, &save_state);
if (err < 0) {
av_log(NULL, AV_LOG_ERROR, "Entropy decode returned error.\n");
return 1;
} else {
int bits_read = get_bits_count(&gbc);
if (bits_written != bits_read) {
av_log(NULL, AV_LOG_ERROR, "Wrote %d bits but read %d.\n",
bits_written, bits_read);
return 1;
} else {
err = 0;
for (int i = 0; i < 64; i++) {
if (block[i] != block_test2[i])
++err;
}
if (err > 0) {
av_log(NULL, AV_LOG_ERROR, "%d mismatches in output block.\n", err);
return err;
}
}
}
if (state.prev_dc != save_state.prev_dc ||
state.prev_k_dc != save_state.prev_k_dc ||
state.prev_k_level != save_state.prev_k_level) {
av_log(NULL, AV_LOG_ERROR, "Entropy state mismatch.\n");
return 1;
}
}
return 0;
}
int main(void)
{
int err;
err = test_apv_read_vlc();
if (err) {
av_log(NULL, AV_LOG_ERROR, "Read VLC test failed.\n");
return err;
}
err = test_apv_entropy_decode_block();
if (err) {
av_log(NULL, AV_LOG_ERROR, "Entropy decode block test failed.\n");
return err;
}
return 0;
}

View File

@ -3,6 +3,11 @@ fate-av1-levels: libavcodec/tests/av1_levels$(EXESUF)
fate-av1-levels: CMD = run libavcodec/tests/av1_levels$(EXESUF)
fate-av1-levels: REF = /dev/null
FATE_LIBAVCODEC-$(CONFIG_APV_DECODER) += fate-apv-entropy
fate-apv-entropy: libavcodec/tests/apv$(EXESUF)
fate-apv-entropy: CMD = run libavcodec/tests/apv$(EXESUF)
fate-apv-entropy: REF = /dev/null
FATE_LIBAVCODEC-yes += fate-avpacket
fate-avpacket: libavcodec/tests/avpacket$(EXESUF)
fate-avpacket: CMD = run libavcodec/tests/avpacket$(EXESUF)