Files
2024-06-21 19:35:22 +05:30
..
2024-06-21 19:35:22 +05:30
2024-06-21 19:35:22 +05:30
2024-06-21 19:35:22 +05:30

<!DOCTYPE html>
<html lang="en">
<head>
    <meta http-equiv="content-type" content="text/html;charset=utf-8"/>
    <meta name="viewport" content="width=device-width, initial-scale=1.0"/>
    <meta name="description" content=""/>

    <meta name="twitter:card" content="summary"/>
    <meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&amp;v=4"/>
    <meta name="twitter:title" content="Switch Transformer"/>
    <meta name="twitter:description" content=""/>
    <meta name="twitter:site" content="@labmlai"/>
    <meta name="twitter:creator" content="@labmlai"/>

    <meta property="og:url" content="https://nn.labml.ai/transformers/switch/readme.html"/>
    <meta property="og:title" content="Switch Transformer"/>
    <meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&amp;v=4"/>
    <meta property="og:site_name" content="Switch Transformer"/>
    <meta property="og:type" content="object"/>
    <meta property="og:title" content="Switch Transformer"/>
    <meta property="og:description" content=""/>

    <title>Switch Transformer</title>
    <link rel="shortcut icon" href="/icon.png"/>
    <link rel="stylesheet" href="../../pylit.css?v=1">
    <link rel="canonical" href="https://nn.labml.ai/transformers/switch/readme.html"/>
    <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.13.18/dist/katex.min.css" integrity="sha384-zTROYFVGOfTw7JV7KUu8udsvW2fx4lWOsCEDqhBreBwlHI4ioVRtmIvEThzJHGET" crossorigin="anonymous">

    <!-- Global site tag (gtag.js) - Google Analytics -->
    <script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
    <script>
        window.dataLayer = window.dataLayer || [];

        function gtag() {
            dataLayer.push(arguments);
        }

        gtag('js', new Date());

        gtag('config', 'G-4V3HC8HBLH');
    </script>
</head>
<body>
<div id='container'>
    <div id="background"></div>
    <div class='section'>
        <div class='docs'>
            <p>
                <a class="parent" href="/">home</a>
                <a class="parent" href="../index.html">transformers</a>
                <a class="parent" href="index.html">switch</a>
            </p>
            <p>
                <a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations" target="_blank">
                    <img alt="Github"
                         src="https://img.shields.io/github/stars/labmlai/annotated_deep_learning_paper_implementations?style=social"
                         style="max-width:100%;"/></a>
                <a href="https://twitter.com/labmlai" rel="nofollow" target="_blank">
                    <img alt="Twitter"
                         src="https://img.shields.io/twitter/follow/labmlai?style=social"
                         style="max-width:100%;"/></a>
            </p>
            <p>
                <a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations/tree/master/labml_nn/transformers/switch/readme.md" target="_blank">
                    View code on Github</a>
            </p>
        </div>
    </div>
    <div class='section' id='section-0'>
        <div class='docs'>
            <div class='section-link'>
                <a href='#section-0'>#</a>
            </div>
            <h1><a href="https://nn.labml.ai/transformers/switch/index.html">Switch Transformer</a></h1>
<p>This is a miniature <a href="https://pytorch.org">PyTorch</a> implementation of the paper <a href="https://arxiv.org/abs/2101.03961">Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity</a>. Our implementation only has a few million parameters and doesn&#x27;t do model parallel distributed training. It does single GPU training, but we implement the concept of switching as described in the paper.</p>
<p>The Switch Transformer uses different parameters for each token by switching among parameters based on the token. Therefore, only a fraction of parameters are chosen for each token. So you can have more parameters but less computational cost.</p>
<p>The switching happens at the Position-wise Feedforward network (FFN) of each transformer block. Position-wise feedforward network consists of two sequentially fully connected layers. In switch transformer we have multiple FFNs (multiple experts), and we chose which one to use based on a router. The output is a set of probabilities for picking a FFN, and we pick the one with the highest probability and only evaluate that. So essentially the computational cost is the same as having a single FFN. In our implementation this doesn&#x27;t parallelize well when you have many or large FFNs since it&#x27;s all happening on a single GPU. In a distributed setup you would have each FFN (each very large) on a different device.</p>
<p>The paper introduces another loss term to balance load among the experts (FFNs) and discusses dropping tokens when routing is not balanced.</p>
<p>Here&#x27;s <a href="experiment.html">the training code</a> and a notebook for training a switch transformer on Tiny Shakespeare dataset. </p>

        </div>
        <div class='code'>
            
        </div>
    </div>
    <div class='footer'>
        <a href="https://labml.ai">labml.ai</a>
    </div>
</div>
<script src=../../interactive.js?v=1"></script>
<script>
    function handleImages() {
        var images = document.querySelectorAll('p>img')

        for (var i = 0; i < images.length; ++i) {
            handleImage(images[i])
        }
    }

    function handleImage(img) {
        img.parentElement.style.textAlign = 'center'

        var modal = document.createElement('div')
        modal.id = 'modal'

        var modalContent = document.createElement('div')
        modal.appendChild(modalContent)

        var modalImage = document.createElement('img')
        modalContent.appendChild(modalImage)

        var span = document.createElement('span')
        span.classList.add('close')
        span.textContent = 'x'
        modal.appendChild(span)

        img.onclick = function () {
            console.log('clicked')
            document.body.appendChild(modal)
            modalImage.src = img.src
        }

        span.onclick = function () {
            document.body.removeChild(modal)
        }
    }

    handleImages()
</script>
</body>
</html>