mirror of
				https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
				synced 2025-10-31 18:58:43 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			89 lines
		
	
	
		
			4.0 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			89 lines
		
	
	
		
			4.0 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| [](https://join.slack.com/t/labforml/shared_invite/zt-egj9zvq9-Dl3hhZqobexgT7aVKnD14g/)
 | |
| [](https://twitter.com/labmlai)
 | |
| 
 | |
| # [labml.ai Neural Networks](https://nn.labml.ai/index.html)
 | |
| 
 | |
| This is a collection of simple PyTorch implementations of
 | |
| neural networks and related algorithms.
 | |
| These implementations are documented with explanations,
 | |
| 
 | |
| [The website](https://nn.labml.ai/index.html)
 | |
| renders these as side-by-side formatted notes.
 | |
| We believe these would help you understand these algorithms better.
 | |
| 
 | |
| 
 | |
| 
 | |
| We are actively maintaining this repo and adding new 
 | |
| implementations almost weekly.
 | |
| [](https://twitter.com/labmlai) for updates.
 | |
| 
 | |
| ## Modules
 | |
| 
 | |
| #### ✨ [Transformers](https://nn.labml.ai/transformers/index.html)
 | |
| 
 | |
| * [Multi-headed attention](https://nn.labml.ai/transformers/mha.html)
 | |
| * [Transformer building blocks](https://nn.labml.ai/transformers/models.html) 
 | |
| * [Transformer XL](https://nn.labml.ai/transformers/xl/index.html)
 | |
|     * [Relative multi-headed attention](https://nn.labml.ai/transformers/xl/relative_mha.html)
 | |
| * [Compressive Transformer](https://nn.labml.ai/transformers/compressive/index.html)
 | |
| * [GPT Architecture](https://nn.labml.ai/transformers/gpt/index.html)
 | |
| * [GLU Variants](https://nn.labml.ai/transformers/glu_variants/simple.html)
 | |
| * [kNN-LM: Generalization through Memorization](https://nn.labml.ai/transformers/knn)
 | |
| * [Feedback Transformer](https://nn.labml.ai/transformers/feedback/index.html)
 | |
| * [Switch Transformer](https://nn.labml.ai/transformers/switch/index.html)
 | |
| * [Fast Weights Transformer](https://nn.labml.ai/transformers/fast_weights/index.html)
 | |
| 
 | |
| #### ✨ [Recurrent Highway Networks](https://nn.labml.ai/recurrent_highway_networks/index.html)
 | |
| 
 | |
| #### ✨ [LSTM](https://nn.labml.ai/lstm/index.html)
 | |
| 
 | |
| #### ✨ [HyperNetworks - HyperLSTM](https://nn.labml.ai/hypernetworks/hyper_lstm.html)
 | |
| 
 | |
| #### ✨ [Capsule Networks](https://nn.labml.ai/capsule_networks/index.html)
 | |
| 
 | |
| #### ✨ [Generative Adversarial Networks](https://nn.labml.ai/gan/index.html)
 | |
| * [GAN with a multi-layer perceptron](https://nn.labml.ai/gan/simple_mnist_experiment.html)
 | |
| * [GAN with deep convolutional network](https://nn.labml.ai/gan/dcgan.html)
 | |
| * [Cycle GAN](https://nn.labml.ai/gan/cycle_gan.html)
 | |
| 
 | |
| #### ✨ [Sketch RNN](https://nn.labml.ai/sketch_rnn/index.html)
 | |
| 
 | |
| #### ✨ [Reinforcement Learning](https://nn.labml.ai/rl/index.html)
 | |
| * [Proximal Policy Optimization](https://nn.labml.ai/rl/ppo/index.html) with
 | |
|  [Generalized Advantage Estimation](https://nn.labml.ai/rl/ppo/gae.html)
 | |
| * [Deep Q Networks](https://nn.labml.ai/rl/dqn/index.html) with
 | |
|  with [Dueling Network](https://nn.labml.ai/rl/dqn/model.html),
 | |
|  [Prioritized Replay](https://nn.labml.ai/rl/dqn/replay_buffer.html)
 | |
|  and Double Q Network.
 | |
| 
 | |
| #### ✨ [Optimizers](https://nn.labml.ai/optimizers/index.html)
 | |
| * [Adam](https://nn.labml.ai/optimizers/adam.html)
 | |
| * [AMSGrad](https://nn.labml.ai/optimizers/amsgrad.html)
 | |
| * [Adam Optimizer with warmup](https://nn.labml.ai/optimizers/adam_warmup.html)
 | |
| * [Noam Optimizer](https://nn.labml.ai/optimizers/noam.html)
 | |
| * [Rectified Adam Optimizer](https://nn.labml.ai/optimizers/radam.html)
 | |
| * [AdaBelief Optimizer](https://nn.labml.ai/optimizers/ada_belief.html)
 | |
| 
 | |
| #### ✨ [Normalization Layers](https://nn.labml.ai/normalization/index.html)
 | |
| * [Batch Normalization](https://nn.labml.ai/normalization/batch_norm/index.html)
 | |
| * [Layer Normalization](https://nn.labml.ai/normalization/layer_norm/index.html)
 | |
| 
 | |
| ### Installation
 | |
| 
 | |
| ```bash
 | |
| pip install labml-nn
 | |
| ```
 | |
| 
 | |
| ### Citing LabML
 | |
| 
 | |
| If you use LabML for academic research, please cite the library using the following BibTeX entry.
 | |
| 
 | |
| ```bibtex
 | |
| @misc{labml,
 | |
|  author = {Varuna Jayasiri, Nipun Wijerathne},
 | |
|  title = {LabML: A library to organize machine learning experiments},
 | |
|  year = {2020},
 | |
|  url = {https://nn.labml.ai/},
 | |
| }
 | |
| ```
 | 
