Files
Varuna Jayasiri efd2673735 cleanup
2021-06-02 21:40:05 +05:30

847 lines
55 KiB
HTML

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="content-type" content="text/html;charset=utf-8"/>
<meta name="viewport" content="width=device-width, initial-scale=1.0"/>
<meta name="description" content="This experiment trains a small switch transformer on tiny Shakespeare dataset."/>
<meta name="twitter:card" content="summary"/>
<meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&amp;v=4"/>
<meta name="twitter:title" content="Switch Transformer Experiment"/>
<meta name="twitter:description" content="This experiment trains a small switch transformer on tiny Shakespeare dataset."/>
<meta name="twitter:site" content="@labmlai"/>
<meta name="twitter:creator" content="@labmlai"/>
<meta property="og:url" content="https://nn.labml.ai/transformers/switch/experiment.html"/>
<meta property="og:title" content="Switch Transformer Experiment"/>
<meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&amp;v=4"/>
<meta property="og:site_name" content="LabML Neural Networks"/>
<meta property="og:type" content="object"/>
<meta property="og:title" content="Switch Transformer Experiment"/>
<meta property="og:description" content="This experiment trains a small switch transformer on tiny Shakespeare dataset."/>
<title>Switch Transformer Experiment</title>
<link rel="shortcut icon" href="/icon.png"/>
<link rel="stylesheet" href="../../pylit.css">
<link rel="canonical" href="https://nn.labml.ai/transformers/switch/experiment.html"/>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag() {
dataLayer.push(arguments);
}
gtag('js', new Date());
gtag('config', 'G-4V3HC8HBLH');
</script>
</head>
<body>
<div id='container'>
<div id="background"></div>
<div class='section'>
<div class='docs'>
<p>
<a class="parent" href="/">home</a>
<a class="parent" href="../index.html">transformers</a>
<a class="parent" href="index.html">switch</a>
</p>
<p>
<a href="https://github.com/lab-ml/labml_nn/tree/master/labml_nn/transformers/switch/experiment.py">
<img alt="Github"
src="https://img.shields.io/github/stars/lab-ml/nn?style=social"
style="max-width:100%;"/></a>
<a href="https://twitter.com/labmlai"
rel="nofollow">
<img alt="Twitter"
src="https://img.shields.io/twitter/follow/labmlai?style=social"
style="max-width:100%;"/></a>
</p>
</div>
</div>
<div class='section' id='section-0'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-0'>#</a>
</div>
<h1>Switch Transformer Experiment</h1>
<p>This is an annotated PyTorch experiment to train a switch transformer.</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">12</span><span></span><span class="kn">import</span> <span class="nn">torch</span>
<span class="lineno">13</span><span class="kn">import</span> <span class="nn">torch.nn</span> <span class="k">as</span> <span class="nn">nn</span>
<span class="lineno">14</span>
<span class="lineno">15</span><span class="kn">from</span> <span class="nn">labml</span> <span class="kn">import</span> <span class="n">experiment</span><span class="p">,</span> <span class="n">tracker</span>
<span class="lineno">16</span><span class="kn">from</span> <span class="nn">labml.configs</span> <span class="kn">import</span> <span class="n">option</span>
<span class="lineno">17</span><span class="kn">from</span> <span class="nn">labml_helpers.module</span> <span class="kn">import</span> <span class="n">Module</span>
<span class="lineno">18</span><span class="kn">from</span> <span class="nn">labml_helpers.train_valid</span> <span class="kn">import</span> <span class="n">BatchIndex</span>
<span class="lineno">19</span><span class="kn">from</span> <span class="nn">labml_nn.experiments.nlp_autoregression</span> <span class="kn">import</span> <span class="n">NLPAutoRegressionConfigs</span></pre></div>
</div>
</div>
<div class='section' id='section-1'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-1'>#</a>
</div>
<h2>Auto regressive model</h2>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">22</span><span class="k">class</span> <span class="nc">AutoregressiveModel</span><span class="p">(</span><span class="n">Module</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-2'>
<div class='docs'>
<div class='section-link'>
<a href='#section-2'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">27</span> <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">n_vocab</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">d_model</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">transformer</span><span class="p">:</span> <span class="n">Module</span><span class="p">):</span>
<span class="lineno">28</span> <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span></pre></div>
</div>
</div>
<div class='section' id='section-3'>
<div class='docs'>
<div class='section-link'>
<a href='#section-3'>#</a>
</div>
<p>Token embedding module</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">30</span> <span class="bp">self</span><span class="o">.</span><span class="n">src_embed</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Embedding</span><span class="p">(</span><span class="n">n_vocab</span><span class="p">,</span> <span class="n">d_model</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-4'>
<div class='docs'>
<div class='section-link'>
<a href='#section-4'>#</a>
</div>
<p>Transformer</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">32</span> <span class="bp">self</span><span class="o">.</span><span class="n">transformer</span> <span class="o">=</span> <span class="n">transformer</span></pre></div>
</div>
</div>
<div class='section' id='section-5'>
<div class='docs'>
<div class='section-link'>
<a href='#section-5'>#</a>
</div>
<p>Final layer</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">34</span> <span class="bp">self</span><span class="o">.</span><span class="n">generator</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="n">d_model</span><span class="p">,</span> <span class="n">n_vocab</span><span class="p">)</span>
<span class="lineno">35</span> <span class="bp">self</span><span class="o">.</span><span class="n">mask</span> <span class="o">=</span> <span class="kc">None</span></pre></div>
</div>
</div>
<div class='section' id='section-6'>
<div class='docs'>
<div class='section-link'>
<a href='#section-6'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">37</span> <span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-7'>
<div class='docs'>
<div class='section-link'>
<a href='#section-7'>#</a>
</div>
<p>Initialize the subsequent mask</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">39</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">mask</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">or</span> <span class="bp">self</span><span class="o">.</span><span class="n">mask</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span> <span class="o">!=</span> <span class="nb">len</span><span class="p">(</span><span class="n">x</span><span class="p">):</span>
<span class="lineno">40</span> <span class="kn">from</span> <span class="nn">labml_nn.transformers.utils</span> <span class="kn">import</span> <span class="n">subsequent_mask</span>
<span class="lineno">41</span> <span class="bp">self</span><span class="o">.</span><span class="n">mask</span> <span class="o">=</span> <span class="n">subsequent_mask</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">x</span><span class="p">))</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">x</span><span class="o">.</span><span class="n">device</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-8'>
<div class='docs'>
<div class='section-link'>
<a href='#section-8'>#</a>
</div>
<p>Token embeddings</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">43</span> <span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">src_embed</span><span class="p">(</span><span class="n">x</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-9'>
<div class='docs'>
<div class='section-link'>
<a href='#section-9'>#</a>
</div>
<p>Run it through the transformer</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">45</span> <span class="n">res</span><span class="p">,</span> <span class="n">counts</span><span class="p">,</span> <span class="n">route_prob</span><span class="p">,</span> <span class="n">n_dropped</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">transformer</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">mask</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-10'>
<div class='docs'>
<div class='section-link'>
<a href='#section-10'>#</a>
</div>
<p>Generate logits of the next token</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">47</span> <span class="n">res</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">generator</span><span class="p">(</span><span class="n">res</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-11'>
<div class='docs'>
<div class='section-link'>
<a href='#section-11'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">49</span> <span class="k">return</span> <span class="n">res</span><span class="p">,</span> <span class="n">counts</span><span class="p">,</span> <span class="n">route_prob</span><span class="p">,</span> <span class="n">n_dropped</span></pre></div>
</div>
</div>
<div class='section' id='section-12'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-12'>#</a>
</div>
<h2>Configurations</h2>
<p>This extends <a href="../../experiments/nlp_autoregression.html"><code>NLPAutoRegressionConfigs</code></a>.</p>
<p>The default configs can and will be over-ridden when we start the experiment</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">52</span><span class="k">class</span> <span class="nc">Configs</span><span class="p">(</span><span class="n">NLPAutoRegressionConfigs</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-13'>
<div class='docs'>
<div class='section-link'>
<a href='#section-13'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">61</span> <span class="n">model</span><span class="p">:</span> <span class="n">AutoregressiveModel</span>
<span class="lineno">62</span> <span class="n">transformer</span><span class="p">:</span> <span class="n">Module</span></pre></div>
</div>
</div>
<div class='section' id='section-14'>
<div class='docs'>
<div class='section-link'>
<a href='#section-14'>#</a>
</div>
<p>Token embedding size</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">65</span> <span class="n">d_model</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">128</span></pre></div>
</div>
</div>
<div class='section' id='section-15'>
<div class='docs'>
<div class='section-link'>
<a href='#section-15'>#</a>
</div>
<p>Number of attention heads</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">67</span> <span class="n">heads</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">4</span></pre></div>
</div>
</div>
<div class='section' id='section-16'>
<div class='docs'>
<div class='section-link'>
<a href='#section-16'>#</a>
</div>
<p>Dropout probability</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">69</span> <span class="n">dropout</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.0</span></pre></div>
</div>
</div>
<div class='section' id='section-17'>
<div class='docs'>
<div class='section-link'>
<a href='#section-17'>#</a>
</div>
<p>Number of features in FFN hidden layer</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">71</span> <span class="n">d_ff</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">256</span></pre></div>
</div>
</div>
<div class='section' id='section-18'>
<div class='docs'>
<div class='section-link'>
<a href='#section-18'>#</a>
</div>
<p>Number of transformer layers</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">73</span> <span class="n">n_layers</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">6</span></pre></div>
</div>
</div>
<div class='section' id='section-19'>
<div class='docs'>
<div class='section-link'>
<a href='#section-19'>#</a>
</div>
<p>Number of experts</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">75</span> <span class="n">n_experts</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">4</span></pre></div>
</div>
</div>
<div class='section' id='section-20'>
<div class='docs'>
<div class='section-link'>
<a href='#section-20'>#</a>
</div>
<p>Load balancing coefficient</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">77</span> <span class="n">load_balancing_loss_ceof</span> <span class="o">=</span> <span class="mf">0.01</span></pre></div>
</div>
</div>
<div class='section' id='section-21'>
<div class='docs'>
<div class='section-link'>
<a href='#section-21'>#</a>
</div>
<p>Whether to scale the chosen expert outputs by the routing probability</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">79</span> <span class="n">is_scale_prob</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">True</span></pre></div>
</div>
</div>
<div class='section' id='section-22'>
<div class='docs'>
<div class='section-link'>
<a href='#section-22'>#</a>
</div>
<p>Whether to drop tokens</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">81</span> <span class="n">drop_tokens</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span></pre></div>
</div>
</div>
<div class='section' id='section-23'>
<div class='docs'>
<div class='section-link'>
<a href='#section-23'>#</a>
</div>
<p>Capacity factor to determine capacity of each model</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">83</span> <span class="n">capacity_factor</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">1.0</span></pre></div>
</div>
</div>
<div class='section' id='section-24'>
<div class='docs'>
<div class='section-link'>
<a href='#section-24'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">85</span> <span class="k">def</span> <span class="nf">init</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="lineno">86</span> <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="n">init</span><span class="p">()</span></pre></div>
</div>
</div>
<div class='section' id='section-25'>
<div class='docs'>
<div class='section-link'>
<a href='#section-25'>#</a>
</div>
<p>Initialize tracking indicators</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">88</span> <span class="n">tracker</span><span class="o">.</span><span class="n">set_scalar</span><span class="p">(</span><span class="s2">&quot;lb_loss.*&quot;</span><span class="p">,</span> <span class="kc">False</span><span class="p">)</span>
<span class="lineno">89</span> <span class="n">tracker</span><span class="o">.</span><span class="n">set_scalar</span><span class="p">(</span><span class="s2">&quot;route.*&quot;</span><span class="p">,</span> <span class="kc">False</span><span class="p">)</span>
<span class="lineno">90</span> <span class="n">tracker</span><span class="o">.</span><span class="n">set_scalar</span><span class="p">(</span><span class="s2">&quot;dropped.*&quot;</span><span class="p">,</span> <span class="kc">False</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-26'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-26'>#</a>
</div>
<h3>Training or validation step</h3>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">92</span> <span class="k">def</span> <span class="nf">step</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">batch</span><span class="p">:</span> <span class="nb">any</span><span class="p">,</span> <span class="n">batch_idx</span><span class="p">:</span> <span class="n">BatchIndex</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-27'>
<div class='docs'>
<div class='section-link'>
<a href='#section-27'>#</a>
</div>
<p>Move data to the device</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">98</span> <span class="n">data</span><span class="p">,</span> <span class="n">target</span> <span class="o">=</span> <span class="n">batch</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">device</span><span class="p">),</span> <span class="n">batch</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">device</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-28'>
<div class='docs'>
<div class='section-link'>
<a href='#section-28'>#</a>
</div>
<p>Update global step (number of tokens processed) when in training mode</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">101</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">mode</span><span class="o">.</span><span class="n">is_train</span><span class="p">:</span>
<span class="lineno">102</span> <span class="n">tracker</span><span class="o">.</span><span class="n">add_global_step</span><span class="p">(</span><span class="n">data</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">*</span> <span class="n">data</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span></pre></div>
</div>
</div>
<div class='section' id='section-29'>
<div class='docs'>
<div class='section-link'>
<a href='#section-29'>#</a>
</div>
<p>Whether to capture model outputs</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">105</span> <span class="k">with</span> <span class="bp">self</span><span class="o">.</span><span class="n">mode</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">is_log_activations</span><span class="o">=</span><span class="n">batch_idx</span><span class="o">.</span><span class="n">is_last</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-30'>
<div class='docs'>
<div class='section-link'>
<a href='#section-30'>#</a>
</div>
<p>Get model outputs.</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">107</span> <span class="n">output</span><span class="p">,</span> <span class="n">counts</span><span class="p">,</span> <span class="n">route_prob</span><span class="p">,</span> <span class="n">n_dropped</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">model</span><span class="p">(</span><span class="n">data</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-31'>
<div class='docs'>
<div class='section-link'>
<a href='#section-31'>#</a>
</div>
<p>Calculate and cross entropy loss</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">110</span> <span class="n">cross_entropy_loss</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">loss_func</span><span class="p">(</span><span class="n">output</span><span class="p">,</span> <span class="n">target</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-32'>
<div class='docs'>
<div class='section-link'>
<a href='#section-32'>#</a>
</div>
<p>Total number of tokens processed, $T$, in the current batch $\mathscr{B}$</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">112</span> <span class="n">total</span> <span class="o">=</span> <span class="n">counts</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">dim</span><span class="o">=-</span><span class="mi">1</span><span class="p">,</span> <span class="n">keepdims</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-33'>
<div class='docs'>
<div class='section-link'>
<a href='#section-33'>#</a>
</div>
<p>Fraction of tokens routed to each expert
<script type="math/tex; mode=display">f_i = \frac{1}{T} \sum_{x \in \mathscr{B}} \unicode{x1D7D9} \{ \mathop{argmax} p(x), i \}</script>
$f_i$ is the count of tokens where the argmax of $p(x)$ is equal to $i$.</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">116</span> <span class="n">route_frac</span> <span class="o">=</span> <span class="n">counts</span> <span class="o">/</span> <span class="n">total</span></pre></div>
</div>
</div>
<div class='section' id='section-34'>
<div class='docs'>
<div class='section-link'>
<a href='#section-34'>#</a>
</div>
<p>Mean routing probability
<script type="math/tex; mode=display">P_i = \frac{1}{T} \sum_{x \in \mathscr{B}} p_i (x)</script>
</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">119</span> <span class="n">route_prob</span> <span class="o">=</span> <span class="n">route_prob</span> <span class="o">/</span> <span class="n">total</span></pre></div>
</div>
</div>
<div class='section' id='section-35'>
<div class='docs'>
<div class='section-link'>
<a href='#section-35'>#</a>
</div>
<p>Load balancing loss
<script type="math/tex; mode=display">\mathscr{L} = N \sum_{i=1}^N f_i \cdot P_i</script>
</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">122</span> <span class="n">load_balancing_loss</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">n_experts</span> <span class="o">*</span> <span class="p">(</span><span class="n">route_frac</span> <span class="o">*</span> <span class="n">route_prob</span><span class="p">)</span><span class="o">.</span><span class="n">sum</span><span class="p">()</span></pre></div>
</div>
</div>
<div class='section' id='section-36'>
<div class='docs'>
<div class='section-link'>
<a href='#section-36'>#</a>
</div>
<p>Track stats</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">125</span> <span class="n">tracker</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="s1">&#39;dropped.&#39;</span><span class="p">,</span> <span class="n">total</span><span class="o">.</span><span class="n">new_tensor</span><span class="p">(</span><span class="n">n_dropped</span><span class="p">)</span> <span class="o">/</span> <span class="n">total</span><span class="p">)</span>
<span class="lineno">126</span> <span class="n">tracker</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="s1">&#39;route.min.&#39;</span><span class="p">,</span> <span class="n">route_frac</span><span class="o">.</span><span class="n">min</span><span class="p">())</span>
<span class="lineno">127</span> <span class="n">tracker</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="s1">&#39;route.max.&#39;</span><span class="p">,</span> <span class="n">route_frac</span><span class="o">.</span><span class="n">max</span><span class="p">())</span>
<span class="lineno">128</span> <span class="n">tracker</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="s1">&#39;route.std.&#39;</span><span class="p">,</span> <span class="n">route_frac</span><span class="o">.</span><span class="n">std</span><span class="p">())</span>
<span class="lineno">129</span> <span class="n">tracker</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="s2">&quot;loss.&quot;</span><span class="p">,</span> <span class="n">cross_entropy_loss</span><span class="p">)</span>
<span class="lineno">130</span> <span class="n">tracker</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="s2">&quot;lb_loss.&quot;</span><span class="p">,</span> <span class="n">load_balancing_loss</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-37'>
<div class='docs'>
<div class='section-link'>
<a href='#section-37'>#</a>
</div>
<p>Combined loss.
The load balancing loss is multiplied by a coefficient $\alpha$ which is
set to something small like $\alpha = 0.01$.</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">135</span> <span class="n">loss</span> <span class="o">=</span> <span class="n">cross_entropy_loss</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">load_balancing_loss_ceof</span> <span class="o">*</span> <span class="n">load_balancing_loss</span></pre></div>
</div>
</div>
<div class='section' id='section-38'>
<div class='docs'>
<div class='section-link'>
<a href='#section-38'>#</a>
</div>
<p>Calculate and log accuracy</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">138</span> <span class="bp">self</span><span class="o">.</span><span class="n">accuracy</span><span class="p">(</span><span class="n">output</span><span class="p">,</span> <span class="n">target</span><span class="p">)</span>
<span class="lineno">139</span> <span class="bp">self</span><span class="o">.</span><span class="n">accuracy</span><span class="o">.</span><span class="n">track</span><span class="p">()</span></pre></div>
</div>
</div>
<div class='section' id='section-39'>
<div class='docs'>
<div class='section-link'>
<a href='#section-39'>#</a>
</div>
<p>Train the model</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">142</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">mode</span><span class="o">.</span><span class="n">is_train</span><span class="p">:</span></pre></div>
</div>
</div>
<div class='section' id='section-40'>
<div class='docs'>
<div class='section-link'>
<a href='#section-40'>#</a>
</div>
<p>Calculate gradients</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">144</span> <span class="n">loss</span><span class="o">.</span><span class="n">backward</span><span class="p">()</span></pre></div>
</div>
</div>
<div class='section' id='section-41'>
<div class='docs'>
<div class='section-link'>
<a href='#section-41'>#</a>
</div>
<p>Clip gradients</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">146</span> <span class="n">torch</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">utils</span><span class="o">.</span><span class="n">clip_grad_norm_</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">model</span><span class="o">.</span><span class="n">parameters</span><span class="p">(),</span> <span class="n">max_norm</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">grad_norm_clip</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-42'>
<div class='docs'>
<div class='section-link'>
<a href='#section-42'>#</a>
</div>
<p>Take optimizer step</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">148</span> <span class="bp">self</span><span class="o">.</span><span class="n">optimizer</span><span class="o">.</span><span class="n">step</span><span class="p">()</span></pre></div>
</div>
</div>
<div class='section' id='section-43'>
<div class='docs'>
<div class='section-link'>
<a href='#section-43'>#</a>
</div>
<p>Log the model parameters and gradients on last batch of every epoch</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">150</span> <span class="k">if</span> <span class="n">batch_idx</span><span class="o">.</span><span class="n">is_last</span><span class="p">:</span>
<span class="lineno">151</span> <span class="n">tracker</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="s1">&#39;model&#39;</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">model</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-44'>
<div class='docs'>
<div class='section-link'>
<a href='#section-44'>#</a>
</div>
<p>Clear the gradients</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">153</span> <span class="bp">self</span><span class="o">.</span><span class="n">optimizer</span><span class="o">.</span><span class="n">zero_grad</span><span class="p">()</span></pre></div>
</div>
</div>
<div class='section' id='section-45'>
<div class='docs'>
<div class='section-link'>
<a href='#section-45'>#</a>
</div>
<p>Save the tracked metrics</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">156</span> <span class="n">tracker</span><span class="o">.</span><span class="n">save</span><span class="p">()</span></pre></div>
</div>
</div>
<div class='section' id='section-46'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-46'>#</a>
</div>
<h3>Initialize the auto-regressive model</h3>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">159</span><span class="nd">@option</span><span class="p">(</span><span class="n">Configs</span><span class="o">.</span><span class="n">model</span><span class="p">)</span>
<span class="lineno">160</span><span class="k">def</span> <span class="nf">autoregressive_model</span><span class="p">(</span><span class="n">c</span><span class="p">:</span> <span class="n">Configs</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-47'>
<div class='docs'>
<div class='section-link'>
<a href='#section-47'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">164</span> <span class="n">m</span> <span class="o">=</span> <span class="n">AutoregressiveModel</span><span class="p">(</span><span class="n">c</span><span class="o">.</span><span class="n">n_tokens</span><span class="p">,</span> <span class="n">c</span><span class="o">.</span><span class="n">d_model</span><span class="p">,</span> <span class="n">c</span><span class="o">.</span><span class="n">transformer</span><span class="p">)</span>
<span class="lineno">165</span> <span class="k">return</span> <span class="n">m</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">c</span><span class="o">.</span><span class="n">device</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-48'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-48'>#</a>
</div>
<h3>Initialize the switch transformer</h3>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">168</span><span class="nd">@option</span><span class="p">(</span><span class="n">Configs</span><span class="o">.</span><span class="n">transformer</span><span class="p">)</span>
<span class="lineno">169</span><span class="k">def</span> <span class="nf">switch_transformer</span><span class="p">(</span><span class="n">c</span><span class="p">:</span> <span class="n">Configs</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-49'>
<div class='docs'>
<div class='section-link'>
<a href='#section-49'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">173</span> <span class="kn">from</span> <span class="nn">labml_nn.transformers.switch</span> <span class="kn">import</span> <span class="n">SwitchTransformer</span><span class="p">,</span> <span class="n">SwitchTransformerLayer</span><span class="p">,</span> <span class="n">SwitchFeedForward</span>
<span class="lineno">174</span> <span class="kn">from</span> <span class="nn">labml_nn.transformers</span> <span class="kn">import</span> <span class="n">MultiHeadAttention</span>
<span class="lineno">175</span> <span class="kn">from</span> <span class="nn">labml_nn.transformers.feed_forward</span> <span class="kn">import</span> <span class="n">FeedForward</span>
<span class="lineno">176</span>
<span class="lineno">177</span> <span class="k">return</span> <span class="n">SwitchTransformer</span><span class="p">(</span>
<span class="lineno">178</span> <span class="n">SwitchTransformerLayer</span><span class="p">(</span><span class="n">d_model</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">d_model</span><span class="p">,</span>
<span class="lineno">179</span> <span class="n">attn</span><span class="o">=</span><span class="n">MultiHeadAttention</span><span class="p">(</span><span class="n">c</span><span class="o">.</span><span class="n">heads</span><span class="p">,</span> <span class="n">c</span><span class="o">.</span><span class="n">d_model</span><span class="p">,</span> <span class="n">c</span><span class="o">.</span><span class="n">dropout</span><span class="p">),</span>
<span class="lineno">180</span> <span class="n">feed_forward</span><span class="o">=</span><span class="n">SwitchFeedForward</span><span class="p">(</span><span class="n">capacity_factor</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">capacity_factor</span><span class="p">,</span>
<span class="lineno">181</span> <span class="n">drop_tokens</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">drop_tokens</span><span class="p">,</span>
<span class="lineno">182</span> <span class="n">is_scale_prob</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">is_scale_prob</span><span class="p">,</span>
<span class="lineno">183</span> <span class="n">n_experts</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">n_experts</span><span class="p">,</span>
<span class="lineno">184</span> <span class="n">expert</span><span class="o">=</span><span class="n">FeedForward</span><span class="p">(</span><span class="n">c</span><span class="o">.</span><span class="n">d_model</span><span class="p">,</span> <span class="n">c</span><span class="o">.</span><span class="n">d_ff</span><span class="p">,</span> <span class="n">c</span><span class="o">.</span><span class="n">dropout</span><span class="p">),</span>
<span class="lineno">185</span> <span class="n">d_model</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">d_model</span><span class="p">),</span>
<span class="lineno">186</span> <span class="n">dropout_prob</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">dropout</span><span class="p">),</span>
<span class="lineno">187</span> <span class="n">c</span><span class="o">.</span><span class="n">n_layers</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-50'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-50'>#</a>
</div>
<h3>Run the experiment</h3>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">190</span><span class="k">def</span> <span class="nf">main</span><span class="p">():</span></pre></div>
</div>
</div>
<div class='section' id='section-51'>
<div class='docs'>
<div class='section-link'>
<a href='#section-51'>#</a>
</div>
<p>Create experiment</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">195</span> <span class="n">experiment</span><span class="o">.</span><span class="n">create</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s2">&quot;switch_transformer&quot;</span><span class="p">,</span> <span class="n">comment</span><span class="o">=</span><span class="s1">&#39;&#39;</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-52'>
<div class='docs'>
<div class='section-link'>
<a href='#section-52'>#</a>
</div>
<p>Create configs</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">197</span> <span class="n">conf</span> <span class="o">=</span> <span class="n">Configs</span><span class="p">()</span></pre></div>
</div>
</div>
<div class='section' id='section-53'>
<div class='docs'>
<div class='section-link'>
<a href='#section-53'>#</a>
</div>
<p>Load configurations</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">199</span> <span class="n">experiment</span><span class="o">.</span><span class="n">configs</span><span class="p">(</span><span class="n">conf</span><span class="p">,</span></pre></div>
</div>
</div>
<div class='section' id='section-54'>
<div class='docs'>
<div class='section-link'>
<a href='#section-54'>#</a>
</div>
<p>A dictionary of configurations to override</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">201</span> <span class="p">{</span><span class="s1">&#39;tokenizer&#39;</span><span class="p">:</span> <span class="s1">&#39;character&#39;</span><span class="p">,</span>
<span class="lineno">202</span> <span class="s1">&#39;text&#39;</span><span class="p">:</span> <span class="s1">&#39;tiny_shakespeare&#39;</span><span class="p">,</span>
<span class="lineno">203</span> <span class="s1">&#39;optimizer.learning_rate&#39;</span><span class="p">:</span> <span class="mf">1.</span><span class="p">,</span>
<span class="lineno">204</span> <span class="s1">&#39;optimizer.optimizer&#39;</span><span class="p">:</span> <span class="s1">&#39;Noam&#39;</span><span class="p">,</span>
<span class="lineno">205</span> <span class="s1">&#39;prompt&#39;</span><span class="p">:</span> <span class="s1">&#39;It is&#39;</span><span class="p">,</span>
<span class="lineno">206</span> <span class="s1">&#39;prompt_separator&#39;</span><span class="p">:</span> <span class="s1">&#39;&#39;</span><span class="p">,</span>
<span class="lineno">207</span>
<span class="lineno">208</span> <span class="s1">&#39;transformer&#39;</span><span class="p">:</span> <span class="s1">&#39;switch_transformer&#39;</span><span class="p">,</span>
<span class="lineno">209</span> <span class="s1">&#39;is_scale_prob&#39;</span><span class="p">:</span> <span class="kc">False</span><span class="p">,</span>
<span class="lineno">210</span> <span class="s1">&#39;n_experts&#39;</span><span class="p">:</span> <span class="mi">4</span><span class="p">,</span>
<span class="lineno">211</span>
<span class="lineno">212</span> <span class="s1">&#39;drop_tokens&#39;</span><span class="p">:</span> <span class="kc">True</span><span class="p">,</span>
<span class="lineno">213</span> <span class="s1">&#39;capacity_factor&#39;</span><span class="p">:</span> <span class="mf">1.2</span><span class="p">,</span>
<span class="lineno">214</span>
<span class="lineno">215</span> <span class="s1">&#39;train_loader&#39;</span><span class="p">:</span> <span class="s1">&#39;shuffled_train_loader&#39;</span><span class="p">,</span>
<span class="lineno">216</span> <span class="s1">&#39;valid_loader&#39;</span><span class="p">:</span> <span class="s1">&#39;shuffled_valid_loader&#39;</span><span class="p">,</span>
<span class="lineno">217</span>
<span class="lineno">218</span> <span class="s1">&#39;seq_len&#39;</span><span class="p">:</span> <span class="mi">64</span><span class="p">,</span>
<span class="lineno">219</span> <span class="s1">&#39;epochs&#39;</span><span class="p">:</span> <span class="mi">128</span><span class="p">,</span>
<span class="lineno">220</span> <span class="s1">&#39;batch_size&#39;</span><span class="p">:</span> <span class="mi">32</span><span class="p">,</span>
<span class="lineno">221</span> <span class="s1">&#39;inner_iterations&#39;</span><span class="p">:</span> <span class="mi">25</span><span class="p">,</span>
<span class="lineno">222</span> <span class="p">})</span></pre></div>
</div>
</div>
<div class='section' id='section-55'>
<div class='docs'>
<div class='section-link'>
<a href='#section-55'>#</a>
</div>
<p>Set models for saving and loading</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">225</span> <span class="n">experiment</span><span class="o">.</span><span class="n">add_pytorch_models</span><span class="p">({</span><span class="s1">&#39;model&#39;</span><span class="p">:</span> <span class="n">conf</span><span class="o">.</span><span class="n">model</span><span class="p">})</span></pre></div>
</div>
</div>
<div class='section' id='section-56'>
<div class='docs'>
<div class='section-link'>
<a href='#section-56'>#</a>
</div>
<p>Start the experiment</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">228</span> <span class="k">with</span> <span class="n">experiment</span><span class="o">.</span><span class="n">start</span><span class="p">():</span></pre></div>
</div>
</div>
<div class='section' id='section-57'>
<div class='docs'>
<div class='section-link'>
<a href='#section-57'>#</a>
</div>
<p><code>TrainValidConfigs.run</code></p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">230</span> <span class="n">conf</span><span class="o">.</span><span class="n">run</span><span class="p">()</span></pre></div>
</div>
</div>
<div class='section' id='section-58'>
<div class='docs'>
<div class='section-link'>
<a href='#section-58'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">234</span><span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s1">&#39;__main__&#39;</span><span class="p">:</span>
<span class="lineno">235</span> <span class="n">main</span><span class="p">()</span></pre></div>
</div>
</div>
</div>
</div>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.4/MathJax.js?config=TeX-AMS_HTML">
</script>
<!-- MathJax configuration -->
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
tex2jax: {
inlineMath: [ ['$','$'] ],
displayMath: [ ['$$','$$'] ],
processEscapes: true,
processEnvironments: true
},
// Center justify equations in code and markdown cells. Elsewhere
// we use CSS to left justify single line equations in code cells.
displayAlign: 'center',
"HTML-CSS": { fonts: ["TeX"] }
});
</script>
<script>
function handleImages() {
var images = document.querySelectorAll('p>img')
console.log(images);
for (var i = 0; i < images.length; ++i) {
handleImage(images[i])
}
}
function handleImage(img) {
img.parentElement.style.textAlign = 'center'
var modal = document.createElement('div')
modal.id = 'modal'
var modalContent = document.createElement('div')
modal.appendChild(modalContent)
var modalImage = document.createElement('img')
modalContent.appendChild(modalImage)
var span = document.createElement('span')
span.classList.add('close')
span.textContent = 'x'
modal.appendChild(span)
img.onclick = function () {
console.log('clicked')
document.body.appendChild(modal)
modalImage.src = img.src
}
span.onclick = function () {
document.body.removeChild(modal)
}
}
handleImages()
</script>
</body>
</html>