This is an annotated PyTorch experiment to train a switch transformer.
12import torch
13import torch.nn as nn
14
15from labml import experiment, tracker
16from labml.configs import option
17from labml_helpers.module import Module
18from labml_helpers.train_valid import BatchIndex
19from labml_nn.experiments.nlp_autoregression import NLPAutoRegressionConfigs
22class AutoregressiveModel(Module):
27 def __init__(self, n_vocab: int, d_model: int, transformer: Module):
28 super().__init__()
Token embedding module
30 self.src_embed = nn.Embedding(n_vocab, d_model)
Transformer
32 self.transformer = transformer
Final layer
34 self.generator = nn.Linear(d_model, n_vocab)
35 self.mask = None
37 def forward(self, x: torch.Tensor):
Initialize the subsequent mask
39 if self.mask is None or self.mask.size(0) != len(x):
40 from labml_nn.transformers.utils import subsequent_mask
41 self.mask = subsequent_mask(len(x)).to(x.device)
Token embeddings
43 x = self.src_embed(x)
Run it through the transformer
45 res, counts, route_prob, n_dropped = self.transformer(x, self.mask)
Generate logits of the next token
47 res = self.generator(res)
49 return res, counts, route_prob, n_dropped
This extends NLPAutoRegressionConfigs
.
The default configs can and will be over-ridden when we start the experiment
52class Configs(NLPAutoRegressionConfigs):
61 model: AutoregressiveModel
62 transformer: Module
Token embedding size
65 d_model: int = 128
Number of attention heads
67 heads: int = 4
Dropout probability
69 dropout: float = 0.0
Number of features in FFN hidden layer
71 d_ff: int = 256
Number of transformer layers
73 n_layers: int = 6
Number of experts
75 n_experts: int = 4
Load balancing coefficient
77 load_balancing_loss_ceof = 0.01
Whether to scale the chosen expert outputs by the routing probability
79 is_scale_prob: bool = True
Whether to drop tokens
81 drop_tokens: bool = False
Capacity factor to determine capacity of each model
83 capacity_factor: float = 1.0
85 def init(self):
86 super().init()
Initialize tracking indicators
88 tracker.set_scalar("lb_loss.*", False)
89 tracker.set_scalar("route.*", False)
90 tracker.set_scalar("dropped.*", False)
92 def step(self, batch: any, batch_idx: BatchIndex):
Move data to the device
98 data, target = batch[0].to(self.device), batch[1].to(self.device)
Update global step (number of tokens processed) when in training mode
101 if self.mode.is_train:
102 tracker.add_global_step(data.shape[0] * data.shape[1])
Whether to capture model outputs
105 with self.mode.update(is_log_activations=batch_idx.is_last):
Get model outputs.
107 output, counts, route_prob, n_dropped = self.model(data)
Calculate and cross entropy loss
110 cross_entropy_loss = self.loss_func(output, target)
Total number of tokens processed, $T$, in the current batch $\mathscr{B}$
112 total = counts.sum(dim=-1, keepdims=True)
Fraction of tokens routed to each expert $f_i$ is the count of tokens where the argmax of $p(x)$ is equal to $i$.
116 route_frac = counts / total
Mean routing probability
119 route_prob = route_prob / total
Load balancing loss
122 load_balancing_loss = self.n_experts * (route_frac * route_prob).sum()
Track stats
125 tracker.add('dropped.', total.new_tensor(n_dropped) / total)
126 tracker.add('route.min.', route_frac.min())
127 tracker.add('route.max.', route_frac.max())
128 tracker.add('route.std.', route_frac.std())
129 tracker.add("loss.", cross_entropy_loss)
130 tracker.add("lb_loss.", load_balancing_loss)
Combined loss. The load balancing loss is multiplied by a coefficient $\alpha$ which is set to something small like $\alpha = 0.01$.
135 loss = cross_entropy_loss + self.load_balancing_loss_ceof * load_balancing_loss
Calculate and log accuracy
138 self.accuracy(output, target)
139 self.accuracy.track()
Train the model
142 if self.mode.is_train:
Calculate gradients
144 loss.backward()
Clip gradients
146 torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=self.grad_norm_clip)
Take optimizer step
148 self.optimizer.step()
Log the model parameters and gradients on last batch of every epoch
150 if batch_idx.is_last:
151 tracker.add('model', self.model)
Clear the gradients
153 self.optimizer.zero_grad()
Save the tracked metrics
156 tracker.save()
159@option(Configs.model)
160def autoregressive_model(c: Configs):
164 m = AutoregressiveModel(c.n_tokens, c.d_model, c.transformer)
165 return m.to(c.device)
168@option(Configs.transformer)
169def switch_transformer(c: Configs):
173 from labml_nn.transformers.switch import SwitchTransformer, SwitchTransformerLayer, SwitchFeedForward
174 from labml_nn.transformers import MultiHeadAttention
175 from labml_nn.transformers.feed_forward import FeedForward
176
177 return SwitchTransformer(
178 SwitchTransformerLayer(d_model=c.d_model,
179 attn=MultiHeadAttention(c.heads, c.d_model, c.dropout),
180 feed_forward=SwitchFeedForward(capacity_factor=c.capacity_factor,
181 drop_tokens=c.drop_tokens,
182 is_scale_prob=c.is_scale_prob,
183 n_experts=c.n_experts,
184 expert=FeedForward(c.d_model, c.d_ff, c.dropout),
185 d_model=c.d_model),
186 dropout_prob=c.dropout),
187 c.n_layers)
190def main():
Create experiment
195 experiment.create(name="switch_transformer", comment='')
Create configs
197 conf = Configs()
Load configurations
199 experiment.configs(conf,
A dictionary of configurations to override
201 {'tokenizer': 'character',
202 'text': 'tiny_shakespeare',
203 'optimizer.learning_rate': 1.,
204 'optimizer.optimizer': 'Noam',
205 'prompt': 'It is',
206 'prompt_separator': '',
207
208 'transformer': 'switch_transformer',
209 'is_scale_prob': False,
210 'n_experts': 4,
211
212 'drop_tokens': True,
213 'capacity_factor': 1.2,
214
215 'train_loader': 'shuffled_train_loader',
216 'valid_loader': 'shuffled_valid_loader',
217
218 'seq_len': 64,
219 'epochs': 128,
220 'batch_size': 32,
221 'inner_iterations': 25,
222 })
Set models for saving and loading
225 experiment.add_pytorch_models({'model': conf.model})
Start the experiment
228 with experiment.start():
TrainValidConfigs.run
230 conf.run()
234if __name__ == '__main__':
235 main()