mirror of
https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
synced 2025-10-29 09:38:56 +08:00
87 lines
3.8 KiB
Markdown
87 lines
3.8 KiB
Markdown
[](https://join.slack.com/t/labforml/shared_invite/zt-egj9zvq9-Dl3hhZqobexgT7aVKnD14g/)
|
|
[](https://twitter.com/labmlai)
|
|
|
|
# [LabML Neural Networks](https://nn.labml.ai/index.html)
|
|
|
|
This is a collection of simple PyTorch implementations of
|
|
neural networks and related algorithms.
|
|
These implementations are documented with explanations,
|
|
|
|
[The website](https://nn.labml.ai/index.html)
|
|
renders these as side-by-side formatted notes.
|
|
We believe these would help you understand these algorithms better.
|
|
|
|

|
|
|
|
We are actively maintaining this repo and adding new
|
|
implementations almost weekly.
|
|
[](https://twitter.com/labmlai) for updates.
|
|
|
|
## Modules
|
|
|
|
#### ✨ [Transformers](https://nn.labml.ai/transformers/index.html)
|
|
|
|
* [Multi-headed attention](https://nn.labml.ai/transformers/mha.html)
|
|
* [Transformer building blocks](https://nn.labml.ai/transformers/models.html)
|
|
* [Transformer XL](https://nn.labml.ai/transformers/xl/index.html)
|
|
* [Relative multi-headed attention](https://nn.labml.ai/transformers/xl/relative_mha.html)
|
|
* [GPT Architecture](https://nn.labml.ai/transformers/gpt/index.html)
|
|
* [GLU Variants](https://nn.labml.ai/transformers/glu_variants/simple.html)
|
|
* [kNN-LM: Generalization through Memorization](https://nn.labml.ai/transformers/knn)
|
|
* [Feedback Transformer](https://nn.labml.ai/transformers/feedback/index.html)
|
|
* [Switch Transformer](https://nn.labml.ai/transformers/switch/index.html)
|
|
|
|
#### ✨ [Recurrent Highway Networks](https://nn.labml.ai/recurrent_highway_networks/index.html)
|
|
|
|
#### ✨ [LSTM](https://nn.labml.ai/lstm/index.html)
|
|
|
|
#### ✨ [HyperNetworks - HyperLSTM](https://nn.labml.ai/hypernetworks/hyper_lstm.html)
|
|
|
|
#### ✨ [Capsule Networks](https://nn.labml.ai/capsule_networks/index.html)
|
|
|
|
#### ✨ [Generative Adversarial Networks](https://nn.labml.ai/gan/index.html)
|
|
* [GAN with a multi-layer perceptron](https://nn.labml.ai/gan/simple_mnist_experiment.html)
|
|
* [GAN with deep convolutional network](https://nn.labml.ai/gan/dcgan.html)
|
|
* [Cycle GAN](https://nn.labml.ai/gan/cycle_gan.html)
|
|
|
|
#### ✨ [Sketch RNN](https://nn.labml.ai/sketch_rnn/index.html)
|
|
|
|
#### ✨ [Reinforcement Learning](https://nn.labml.ai/rl/index.html)
|
|
* [Proximal Policy Optimization](https://nn.labml.ai/rl/ppo/index.html) with
|
|
[Generalized Advantage Estimation](https://nn.labml.ai/rl/ppo/gae.html)
|
|
* [Deep Q Networks](https://nn.labml.ai/rl/dqn/index.html) with
|
|
with [Dueling Network](https://nn.labml.ai/rl/dqn/model.html),
|
|
[Prioritized Replay](https://nn.labml.ai/rl/dqn/replay_buffer.html)
|
|
and Double Q Network.
|
|
|
|
#### ✨ [Optimizers](https://nn.labml.ai/optimizers/index.html)
|
|
* [Adam](https://nn.labml.ai/optimizers/adam.html)
|
|
* [AMSGrad](https://nn.labml.ai/optimizers/amsgrad.html)
|
|
* [Adam Optimizer with warmup](https://nn.labml.ai/optimizers/adam_warmup.html)
|
|
* [Noam Optimizer](https://nn.labml.ai/optimizers/noam.html)
|
|
* [Rectified Adam Optimizer](https://nn.labml.ai/optimizers/radam.html)
|
|
* [AdaBelief Optimizer](https://nn.labml.ai/optimizers/ada_belief.html)
|
|
|
|
#### ✨ [Normalization Layers](https://nn.labml.ai/normalization/index.html)
|
|
* [Batch Normalization](https://nn.labml.ai/normalization/batch_norm/index.html)
|
|
* [Layer Normalization](https://nn.labml.ai/normalization/layer_norm/index.html)
|
|
|
|
### Installation
|
|
|
|
```bash
|
|
pip install labml-nn
|
|
```
|
|
|
|
### Citing LabML
|
|
|
|
If you use LabML for academic research, please cite the library using the following BibTeX entry.
|
|
|
|
```bibtex
|
|
@misc{labml,
|
|
author = {Varuna Jayasiri, Nipun Wijerathne},
|
|
title = {LabML: A library to organize machine learning experiments},
|
|
year = {2020},
|
|
url = {https://lab-ml.com/},
|
|
}
|
|
```
|