mirror of
https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
synced 2025-08-14 09:31:42 +08:00
136 lines
6.0 KiB
HTML
136 lines
6.0 KiB
HTML
<!DOCTYPE html>
|
|
<html>
|
|
<head>
|
|
<meta http-equiv="content-type" content="text/html;charset=utf-8"/>
|
|
<meta name="viewport" content="width=device-width, initial-scale=1.0"/>
|
|
<meta name="description" content=""/>
|
|
|
|
<meta name="twitter:card" content="summary"/>
|
|
<meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
|
|
<meta name="twitter:title" content="Switch Transformer"/>
|
|
<meta name="twitter:description" content=""/>
|
|
<meta name="twitter:site" content="@labmlai"/>
|
|
<meta name="twitter:creator" content="@labmlai"/>
|
|
|
|
<meta property="og:url" content="https://nn.labml.ai/transformers/switch/readme.html"/>
|
|
<meta property="og:title" content="Switch Transformer"/>
|
|
<meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
|
|
<meta property="og:site_name" content="LabML Neural Networks"/>
|
|
<meta property="og:type" content="object"/>
|
|
<meta property="og:title" content="Switch Transformer"/>
|
|
<meta property="og:description" content=""/>
|
|
|
|
<title>Switch Transformer</title>
|
|
<link rel="shortcut icon" href="/icon.png"/>
|
|
<link rel="stylesheet" href="../../pylit.css">
|
|
<link rel="canonical" href="https://nn.labml.ai/transformers/switch/readme.html"/>
|
|
<!-- Global site tag (gtag.js) - Google Analytics -->
|
|
<script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
|
|
<script>
|
|
window.dataLayer = window.dataLayer || [];
|
|
|
|
function gtag() {
|
|
dataLayer.push(arguments);
|
|
}
|
|
|
|
gtag('js', new Date());
|
|
|
|
gtag('config', 'G-4V3HC8HBLH');
|
|
</script>
|
|
</head>
|
|
<body>
|
|
<div id='container'>
|
|
<div id="background"></div>
|
|
<div class='section'>
|
|
<div class='docs'>
|
|
<p>
|
|
<a class="parent" href="/">home</a>
|
|
<a class="parent" href="../index.html">transformers</a>
|
|
<a class="parent" href="index.html">switch</a>
|
|
</p>
|
|
<p>
|
|
|
|
<a href="https://github.com/lab-ml/labml_nn/tree/master/labml_nn/transformers/switch/readme.md">
|
|
<img alt="Github"
|
|
src="https://img.shields.io/github/stars/lab-ml/nn?style=social"
|
|
style="max-width:100%;"/></a>
|
|
<a href="https://join.slack.com/t/labforml/shared_invite/zt-egj9zvq9-Dl3hhZqobexgT7aVKnD14g/"
|
|
rel="nofollow">
|
|
<img alt="Join Slact"
|
|
src="https://img.shields.io/badge/slack-chat-green.svg?logo=slack"
|
|
style="max-width:100%;"/></a>
|
|
<a href="https://twitter.com/labmlai"
|
|
rel="nofollow">
|
|
<img alt="Twitter"
|
|
src="https://img.shields.io/twitter/follow/labmlai?style=social"
|
|
style="max-width:100%;"/></a>
|
|
</p>
|
|
</div>
|
|
</div>
|
|
<div class='section' id='section-0'>
|
|
<div class='docs'>
|
|
<div class='section-link'>
|
|
<a href='#section-0'>#</a>
|
|
</div>
|
|
<h1><a href="https://nn.labml.ai/transformers/switch/index.html">Switch Transformer</a></h1>
|
|
<p>This is a miniature <a href="https://pytorch.org">PyTorch</a> implementation of the paper
|
|
<a href="https://arxiv.org/abs/2101.03961">Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity</a>.
|
|
Our implementation only has a few million parameters and doesn’t do model parallel distributed training.
|
|
It does single GPU training, but we implement the concept of switching as described in the paper.</p>
|
|
<p>The Switch Transformer uses different parameters for each token by switching among parameters,
|
|
based on the token. So only a fraction of parameters is chosen for each token, so you
|
|
can have more parameters but less computational cost.</p>
|
|
<p>The switching happens at the Position-wise Feedforward network (FFN) of each transformer block.
|
|
Position-wise feedforward network is a two sequentially fully connected layers.
|
|
In switch transformer we have multiple FFNs (multiple experts),
|
|
and we chose which one to use based on a router.
|
|
The outputs a set of probabilities for picking a FFN,
|
|
and we pick the one with the highest probability and only evaluates that.
|
|
So essentially the computational cost is same as having a single FFN.
|
|
In our implementation this doesn’t parallelize well when you have many or large FFNs since it’s all
|
|
happening on a single GPU.
|
|
In a distributed setup you would have each FFN (each very large) on a different device.</p>
|
|
<p>The paper introduces another loss term to balance load among the experts (FFNs) and
|
|
discusses dropping tokens when routing is not balanced.</p>
|
|
<p>Here’s <a href="experiment.html">the training code</a> and a notebook for training a switch transformer on Tiny Shakespeare dataset.</p>
|
|
<p><a href="https://colab.research.google.com/github/lab-ml/nn/blob/master/labml_nn/transformers/switch/experiment.ipynb"><img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg" /></a>
|
|
<a href="https://web.lab-ml.com/run?uuid=c4656c605b9311eba13d0242ac1c0002"><img alt="View Run" src="https://img.shields.io/badge/labml-experiment-brightgreen" /></a></p>
|
|
</div>
|
|
<div class='code'>
|
|
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.4/MathJax.js?config=TeX-AMS_HTML">
|
|
</script>
|
|
<!-- MathJax configuration -->
|
|
<script type="text/x-mathjax-config">
|
|
MathJax.Hub.Config({
|
|
tex2jax: {
|
|
inlineMath: [ ['$','$'] ],
|
|
displayMath: [ ['$$','$$'] ],
|
|
processEscapes: true,
|
|
processEnvironments: true
|
|
},
|
|
// Center justify equations in code and markdown cells. Elsewhere
|
|
// we use CSS to left justify single line equations in code cells.
|
|
displayAlign: 'center',
|
|
"HTML-CSS": { fonts: ["TeX"] }
|
|
});
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
</script>
|
|
</body>
|
|
</html> |